Issue |
RAIRO-Theor. Inf. Appl.
Volume 58, 2024
Randomness and Combinatorics - Edited by Luca Ferrari & Paolo Massazza
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/ita/2024007 | |
Published online | 22 March 2024 |
- M. Feinberg, Fibonacci—Tribonacci. Fibonacci Quart. 1 (1963) 71–74. [Google Scholar]
- D.E. Knuth, The Art of Computer Programming: Sorting and Searching, 2nd edn., Vol. 3. Addison-Wesley, Boston, MA (1966). [Google Scholar]
- E.P. Miles Jr, Generalized Fibonacci numbers and associated matrices. Amer. Math. Monthly 67 (1960) 745–752. [CrossRef] [MathSciNet] [Google Scholar]
- J.J. Bravo and J.L. Herrera, Combinatorial interpretation of generalized Pell numbers. J. Integer Seq. 23 (20202) 20.2.1. [Google Scholar]
- E. Barcucci, A. Bernini and M. Poneti, From Fibonacci to Catalan permutations. Pure Math. Appl. 17 (2006) 1–17. [Google Scholar]
- E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, From Motzkin to Catalan permutations. Discrete Math. 217 (2000) 33–49. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Siar and R. Keskin, k-generalized Pell numbers which are concatenation of two repdigits. Mediterr. J. Math. 19 (2022) 180. [CrossRef] [Google Scholar]
- R. Kemp, On the average depth of a prefix of the Dycklanguage d1. Discrete Math. 36 (1981) 155–170. [MathSciNet] [Google Scholar]
- E. Deutsch, L. Ferrari and S. Rinaldi, Production matrices. Adv. Appl. Math. 34 (2005) 101–122. [CrossRef] [MathSciNet] [Google Scholar]
- E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, Eco: a methodology for the Enumeration of Combinatorial Objects. J. Differ. Equ. Appl. 5 (1999) 435–490. [CrossRef] [Google Scholar]
- E. Pergola, R. Pinzani and S. Rinaldi, Approximating algebraic functions by means of rational ones. Theoret. Comput. Sci. 270 (2002) 643–657. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bousquet-Melou, Discrete excursion. Sém. Lothar. Combin. 57 (2008) B57d. [Google Scholar]
- R. Stanley, Catalan Numbers. Cambridge University Press, Cambridge (2015). [CrossRef] [Google Scholar]
- E. Barcucci, A. Bernini and R. Pinzani, Strings from linear recurrences: a Gray code, in Combinatorics on Words: 13th International Conference, WORDS 2021, Rouen, France, September 13–17, 2021. Proceedings (Lecture Notes in Computer Science), Vol. 12847, edited by T. Lecroq and S. Puzynina (2021) 40–49. [Google Scholar]
- E. Barcucci, A. Bernini and R. Pinzani, Strings from linear recurrences and permutations: a Gray code. Theoret. Comput. Sci. 938 (2022) 112–120. [CrossRef] [MathSciNet] [Google Scholar]
- V. Vajnovszki, A loopless generation of bitstrings without p consecutive ones, in Combinatorics, Computability and Logic. Proceedings of the Third International Conference on Combinatorics, Computability and Logic, edited by C.S. Calude, M.J. Dinneen and S. Sburlan (2001) 227–240. [CrossRef] [Google Scholar]
- N.J.A. Sloane and the OEIS Foundation, The on-line encyclopedia of integer sequences. http://oeis.org. [Google Scholar]
- A. Bernini, Restricted binary strings and generalized Fibonacci numbers, in Cellular Automata and Discrete Complex Systems. AUTOMATA 2017. Lecture Notes in Computer Science, Vol. 10248, edited by A. Dennunzio, E. Formenti, L. Manzoni and A. Porreca (2017) 32–43. [Google Scholar]
- A. Bernini, S. Bilotta, R. Pinzani and V. Vajnovszki, A trace partitioned Gray code for q-ary generalized Fibonacci strings. J. Discrete Math. Sci. Cryptogr. 18 (2015) 751–761. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bernini, S. Bilotta, R. Pinzani, A. Sabri and V. Vajnovszki, Gray code orders for q-ary words avoiding a given factor. Acta Inform. 52 (2015) 573–592. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kirgizov, Q-bonacci words and numbers. Fibonacci Quart. 60 (2022) 187–195. [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.