Issue |
RAIRO-Theor. Inf. Appl.
Volume 41, Number 2, April-June 2007
|
|
---|---|---|
Page(s) | 147 - 155 | |
DOI | https://doi.org/10.1051/ita:2007012 | |
Published online | 18 July 2007 |
An algorithm for deciding if a polyomino tiles the plane
1
Laboratoire d'Informatique Fondamentale de Marseille, CNRS UMR 6166, Université de la Méditerranée, 163 avenue de Luminy - Case 901, 13288 Marseille Cedex 9, France; Ian.Gambini@lif.univ-mrs.fr
2
Laboratoire de Mathématiques, CNRS UMR 5127, Université de Savoie, 73376, le Bourget-du-Lac, France; Laurent.Vuillon@univ-savoie.fr
Received:
11
February
2005
Accepted:
3
April
2006
For polyominoes coded by their boundary word, we describe a quadratic O(n2) algorithm in the boundary length n which improves the naive O(n4) algorithm. Techniques used emanate from algorithmics, discrete geometry and combinatorics on words.
Mathematics Subject Classification: 68R15 / 52C20
Key words: Polyominoes / tiling the plane by translation / theorem of Beauquier-Nivat / pseudo-square / pseudo-hexagon / enumeration of special classes of polyominoes
© EDP Sciences, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.