Issue |
RAIRO-Theor. Inf. Appl.
Volume 34, Number 1, January/February 2000
|
|
---|---|---|
Page(s) | 1 - 14 | |
DOI | https://doi.org/10.1051/ita:2000103 | |
Published online | 15 April 2002 |
Succession rules and Deco polyominoes
1
Dipartimento di Sistemi e Informatica, Via
Lombroso 6/17, 50134 Firenze, Italy;
(barcucci@dsi.unifi.it)
2
Dipartimento di Sistemi e Informatica, Via
Lombroso 6/17, 50134 Firenze, Italy;
(brunetti@dsi.unifi.it)
3
Dipartimento di Sistemi e Informatica, Via
Lombroso 6/17, 50134 Firenze, Italy;
(fdr@dsi.unifi.it)
Received:
June
1998
Accepted:
October
1999
In this paper, we examine the class of "deco" polyominoes and the succession rule describing their construction. These polyominoes are enumerated according to their directed height by factorial numbers. By changing some aspects of the "factorial" rule, we obtain some succession rules that describe various "deco" polyomino subclasses. By enumerating the subclasses according to their height and width, we find the following well-known numbers: Stirling numbers of the first and second kind, Narayana and odd index Fibonacci numbers. We wish to point out how the changes made on the original succession rule yield some new succession rules that produce transcendental, algebraic and rational generating functions.
Mathematics Subject Classification: 05B50 / 05A15 / 05A10
Key words: Polyomino / enumeration / succession rule / generating function combinatorial interpretation.
© EDP Sciences, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.