Open Access
Issue |
RAIRO-Theor. Inf. Appl.
Volume 58, 2024
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/ita/2023013 | |
Published online | 19 March 2024 |
- J.H. Chung, Y.K. Han and K. Yang, New quaternary sequences with even period and three-valued autocorrelation. IEICE Trans. Fundam. E93-A (2010) 309–315. [CrossRef] [Google Scholar]
- V. Edemskiy and Z. Chen, On the 4-adic complexity of the two-prime quaternary generator. J. Appl. Math. Comput. 68 (2022) 3565–3585. [CrossRef] [MathSciNet] [Google Scholar]
- H. Hu, Comments on ‘a new method to compute the 2-adic complexity of binary sequences’. IEEE Trans. Inform. Theory 60 (2014) 5803–5804. [CrossRef] [MathSciNet] [Google Scholar]
- R. Hofer and A. Winterhof, On the 2-adic complexity of the two-prime generator. IEEE Trans. Inform. Theory 64 (2018) 5957–5960. [CrossRef] [MathSciNet] [Google Scholar]
- J.-W. Jang, Y.-S. Kim, S.-H. Kim and J.-S. No, New quaternary sequences with ideal autocorrelation constructed from binary sequences with ideal autocorrelation, in Proc. IEEE ISIT. Seoul, Korea, 2009, pp. 278–281. [Google Scholar]
- X. Jing, S. Qiang, M. Yang and K. Feng, Determination of the autocorrelation distribution and 2-adic complexity of generalized cyclotomic binary sequences of order 2 with period pq. arXiv:2105.10947v1 [cs.IT], 2021. [Google Scholar]
- A. Klapper and M. Goresky, Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10 (1997) 111–147. [CrossRef] [Google Scholar]
- Y.-S. Kim, J.-W. Jang, S.-H. Kim and J.-S. No, New quaternary sequences with optimal autocorrelation, in Proc. IEEE ISIT, Seoul, Korea, 2009, pp. 286–289. [Google Scholar]
- Y.-S. Kim, J.-W. Jang, S.-H. Kim and J.-S. No, New construction of quaternary sequences with ideal autocorrelation from Legendre sequences, in Proc. IEEE ISIT, Seoul, Korea, 2009, pp. 282–285. [Google Scholar]
- A. Klapper, A survey of feedback with carry shift regiters, in Proc. Sequences and Their Applications, Seoul, Korea, October 24–Oct. 28, 2004, pp. 56–71. [Google Scholar]
- A. Klapper and M. Goresky, Cryptanalysis based on 2-adic rational approxiamtion, in CRYPTO 1995, LNCS 963, 1995, pp. 262–273. [Google Scholar]
- A. Klapper and J. Xu, Register synthesis for algebraic feedback shift registers based on non-prime. Des. Codes Cryptogr. 31 (2004) 227–250. [CrossRef] [MathSciNet] [Google Scholar]
- S. Qiang, Y. Li, M. Yang and K. Feng, The 4-adic complexity of a class of quaternary cyclotomic sequences with period 2p. arXiv:2011.11875v1 [cs.IT], 2020. [Google Scholar]
- S. Qiang, X. Jing, M. Yang and K. Feng, 4-Adic complexity of interleaved quaternary sequences. arXiv:2105.13826v1 [cs.IT], 2021. [Google Scholar]
- Y. Sun, Q. Wang and T. Yan, A lower bound on the 2-adic complexity of the Jacobi sequences. Cryptogr. Commun. 11 (2019) 337–349. [CrossRef] [MathSciNet] [Google Scholar]
- T. Tian and W.-F. Qi, 2-Adic complexity of binary m-sequences. IEEE Trans. Inform. Theory 56 (2010) 450–454. [CrossRef] [MathSciNet] [Google Scholar]
- H. Xiong, L. Qu and C. Li, A new method to compute 2-adic complexity of binary sequences. IEEE Trans. Inform. Theory 60 (2014) 2399–2406. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Xiao and X. Zeng, 2-Adic complexity of two constructions of binary sequences with period 4N and optimal autocorrelation magnitude. Cryptogr. Commun. 13 (2021) 865–885. [CrossRef] [MathSciNet] [Google Scholar]
- H. Xiong, L. Qu and C. Li, 2-Adic complexity of binary sequences with interleaved structure. Finite Fields Appl. 33 (2015) 14–28. [CrossRef] [MathSciNet] [Google Scholar]
- M. Yang and K. Feng, Determination of 2-adic complexity of generalized binary sequences of order 2. arXiv:2007.15327v1 [cs.IT], 2020. [Google Scholar]
- M. Yang, S. Qiang, K. Feng and D. Lin, On the 4-adic complexity of quaternary sequences of period 2p with ideal autocorrelation, in Proc. IEEE ISIT, Melbourne, Australia, 2021, pp. 1812–1816. [Google Scholar]
- M. Yang, S. Qiang, X. Jing, K. Feng and D. Lin, The 4-adic complexity of quaternary sequences of even period with ideal autocorrelation, in Proc. IEEE ISIT, Espoo, Finland, 2022, pp. 528–531. [Google Scholar]
- Z. Yang and P. Ke, Construction of quaternary sequences of length pq with low autocorrelation. Cryptogr. Commun. 3 (2011) 55–64. [CrossRef] [MathSciNet] [Google Scholar]
- L. Zhao and Q. Wen, On the linear complexity of a class of quaternary sequences with low autocorrelation. IEICE Trans. Fundam. E96-A (2013) 997–1000. [CrossRef] [Google Scholar]
- L. Zhang, J. Zhang, M. Yang and K. Feng, On the 2-adic complexity of the Ding—Helleseth—Martinsen binary sequences. IEEE Trans. Inform. Theory 66 (2020) 4613–4620. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.