RAIRO-Theor. Inf. Appl.
Volume 58, 2024
Randomness and Combinatorics - Edited by Luca Ferrari & Paolo Massazza
Article Number 12
Number of page(s) 26
Published online 26 March 2024
  1. S.W. Golomb, Checker boards and polyominoes. Amer. Math. Monthly 61 (1954) 675–682. [Google Scholar]
  2. J. O’Rourke E.D. Demaine and J.S.B. Mitchell, The open problems project. [Google Scholar]
  3. I. Jensen, Counting polyominoes: a parallel implementation for cluster Computing, in Proceedings of the 2003 International Conference on Computational Science: Part III, ICCS’03. Springer-Verlag (2003) 203–212. [Google Scholar]
  4. M. Bousquet-Mélou, Convex polyominoes and heaps of segments. J. Phys. A: Math. Gen. 25 (1992) 1925–1934. [Google Scholar]
  5. M. Bousquet-Mélou, A method for the enumeration of various classes of column-convex polygons. Discrete Math. 154 (1996) 1–25. [Google Scholar]
  6. G. Castiglione and A. Restivo, Ordering and convex polyominoes, in MCU 2004. Vol. 3354 of Lecture Notes in Computer Science. Springer (2005) 128–139. [Google Scholar]
  7. A. Del Lungo, M. Nivat, R. Pinzani and S. Rinaldi, A bijection for the total area of parallelogram polyominoes. Discret. Appl. Math. 144 (2004) 291–302. [Google Scholar]
  8. D.A. Klarner, S.W. Golomb and G. Barequet, Polyominoes, in Handbook of Discrete and Computational Geometry, edited by J.E. Goodman, J. O’Rourke and C.D. Toth. CRC Press, Boca Raton, FL (2017) 359–380. [Google Scholar]
  9. A. Del Lungo, E. Duchi, A. Frosini and S. Rinaldi, On the generation and enumeration of some classes of convex polyominoes. Electron. J. Comb. 11 (2004) 1–46. [Google Scholar]
  10. A. Del Lungo, A. Frosini and S. Rinaldi, Eco method and the exhaustive generation of convex polyominoes, in DMTC 2003. Vol. 6795 of Lecture Notes in Computer Science. Springer (2003) 129–140. [Google Scholar]
  11. E. Formenti and P. Massazza, From tetris to polyominoes generation. Electron. Notes in Discrete Math. 59 (2017) 79–98. [Google Scholar]
  12. E. Formenti and P. Massazza, On the generation of 2-polyominoes, in DCFS 2018. Vol. 10952 of Lecture Notes in Computer Science. Springer (2018) 101–113. [Google Scholar]
  13. E. Duchi, S. Rinaldi and G. Schaeffer, The number of Z-convex polyominoes. Adv. Appl. Math. 40 (2008) 54–72. [Google Scholar]
  14. K. Tawbe and L. Vuillon, 2l-convex polyominoes: geometrical aspects. Contrib. Discret. Math. 6 (2011) 1–25. [Google Scholar]
  15. G. Castiglione and P. Massazza, An efficient algorithm for the generation of Z-convex polyominoes, in IWCIA 2014. Vol. 8466 of Lecture Notes in Computer Science. Springer (2014) 51–61. [Google Scholar]
  16. G. Castiglione and A. Restivo, Reconstruction of l-convex polyominoes. Electron. Notes Discrete Math. 12 (2003) 290–301. [Google Scholar]
  17. R.P. Stanley, Enumerative combinatorics. Vol. 1 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press (2011). [Google Scholar]
  18. A.J. Guttmann and V. Kotesovec, L-convex polyominoes and 201-avoiding ascent sequences, 2021. [Google Scholar]
  19. A.J. Guttmann, Analysis of series expansions for non-algebraic singularities. J. Phys. A: Math. Theoret. 48 (2015) 045209. [Google Scholar]
  20. A.J. Guttmann, Series extension: predicting approximate series coefficients from a finite number of exact coefficients. J. Phys. A: Math. Theoret. 49 (2016) 415002. [Google Scholar]
  21. P. Massazza, On counting k-convex polyominoes, in Proceedings of the 23rd Italian Conference on Theoretical Computer Science, ICTCS 2022, Rome, Italy, September 7-9, 2022. Vol. 3284 of CEUR Workshop Proceedings, edited by U.D. Lago and D. Gorla. (2022) 116–121. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.