Issue |
RAIRO-Theor. Inf. Appl.
Volume 58, 2024
Randomness and Combinatorics - Edited by Luca Ferrari & Paolo Massazza
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/ita/2024005 | |
Published online | 26 March 2024 |
- R. Oldenburger, Exponent trajectories in symbolic dynamics. Trans. Am. Math. Soc. 46 (1939) 453–466. [CrossRef] [Google Scholar]
- W. Kolakoski, Self-generating runs, problem 5304. Am. Math. Monthly 73 (1966) 681–682. [Google Scholar]
- M.S. Keane, Ergodic theory and subshifts of finite type, in Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces. Lectures given at the Workshop “Hyperbolic Geometry and Ergodic Theory”, held at the International Centre for Theoretical Physics in Trieste, Italy, 17-28 April, 1989. Oxford University Press, Oxford (1991) 35–70. [Google Scholar]
- V. Chvátal, Notes on the Kolakoski sequence. Technical report, DIMACS Technical Report 93–84, December 1993. [Google Scholar]
- V. Berthé, S. Brlek and P. Choquette, Smooth words over arbitrary alphabets. Theor. Comput. Sci. 341 (2005) 293–310. [CrossRef] [Google Scholar]
- S. Brlek, S. Dulucq, A. Ladouceur and L. Vuillon, Combinatorial properties of smooth infinite words. Theor. Comput. Sci. 352 (2006) 306–317. [CrossRef] [Google Scholar]
- F.M. Dekking, On the structure of selfgenerating sequences. Sémin. Théor. Nombres Bordeaux (1980) 1–6. [Google Scholar]
- A. Carpi, Repetitions in the Kolakovski sequence. Bull. EATCS 50 (1993) 194–197. [Google Scholar]
- M. Baake and B. Sing, Kolakoski-(3, 1) is a (deformed) model set. Can. Math. Bull. 47 (2004) 168–190. [CrossRef] [Google Scholar]
- V. Berthé, S. Brlek and P. Choquette, Smooth words over arbitrary alphabets. Theor. Comput. Sci. 341 (2005) 293–310. [CrossRef] [Google Scholar]
- S. Brlek, D. Jamet and G. Paquin, Smooth words on 2-letter alphabets having same parity. Theor. Comput. Sci. 393 (2008) 166–181. [CrossRef] [Google Scholar]
- B. Sing, More Kolakoski sequences. Integers 11B (2011) A14. [Google Scholar]
- R. Lyons, Strong laws of large numbers for weakly correlated random variables. Michigan Math. J. 35 (1988) 353–359. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.