Issue
RAIRO-Theor. Inf. Appl.
Volume 58, 2024
Randomness and Combinatorics - Edited by Luca Ferrari & Paolo Massazza
Article Number 13
Number of page(s) 14
DOI https://doi.org/10.1051/ita/2024010
Published online 09 April 2024
  1. V.R. Pratt, Computing permutations with double-ended queues. Parallel stacks and parallel queues. Proc. Fifth Annual ACM Symposium on Theory of Computing (1973) 268–277 [CrossRef] [Google Scholar]
  2. R.E. Tarjan, Sorting using networks of queues and stacks, J. ACM 19 (1972) 341–346. [CrossRef] [Google Scholar]
  3. J. West, Sorting twice through a stack. Theoret. Comput. Sci. 117 (1993) 303–313. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Cerbai, A. Claesson and L. Ferrari, Stack sorting with restricted stacks. J. Combin. Theory Ser. A 173 (2020) 105230. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Cerbai, A. Claesson, L. Ferrari and E. Steingrimsson, Sorting with pattern-avoiding stacks: the 132-machine. Electron. J. Combin. 27 (2020) 3.32. [Google Scholar]
  6. C. Defant, M. Engen and J.A. Miller, Stack-sorting, set partitions, and Lassalle’s sequence. J. Combin. Theory Ser. A 175 (2020) 105275. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Smith, Two stacks in series: a decreasing stack followed by an increasing stack. Ann. Comb. 18 (2014) 359–363. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. West, Permutations with Forbidden Subsequences and Stack Sortable Permutations. PhD thesis, Massachusetts Institute of Technology (1990). [Google Scholar]
  9. D. Avis and M. Newborn, On pop-stacks in series. Utilitas Math. 19 (1981) 129–140. [MathSciNet] [Google Scholar]
  10. L. Pudwell and R. Smith, Two-stack-sorting with popstacks. Australas. J. Combin. 74 (2019) 179–195. [MathSciNet] [Google Scholar]
  11. A. Claesson and B.A. Guðmundsson, Enumerating permutations sortable by k passes through a pop-stack. Adv. Appl. Math. 108 (2019) 79–96. [CrossRef] [Google Scholar]
  12. H. Magnusson, Sorting operators and their preimages. MSc thesis, Reykjavik University (2013). [Google Scholar]
  13. L. Cioni and L. Ferrari, Preimages under the Queuesort algorithm. Discrete Math. 344 (2021) 112561. [CrossRef] [Google Scholar]
  14. L. Cioni and L. Ferrari, Characterization and enumeration of preimages under the Queuesort algorithm, in Extended Abstracts EuroComb 2021. Trends in Mathematics, Vol. 14, edited by J. Nešetřil, G. Perarnau, J. Rué, J. Serra and O. Serra. Birkhäuser, Cham. [Google Scholar]
  15. J. West, Generating trees and forbidden sequences. Discrete Math. 157 (1996) 363–374. [CrossRef] [MathSciNet] [Google Scholar]
  16. N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences. Available at oeis.org. [Google Scholar]
  17. M. Bouvel, L. Cioni and L. Ferrari, Preimages under the Bubblesort operator. Electron. J. Combin. 29 (2022) 4.32. [CrossRef] [Google Scholar]
  18. D. Foata and M.-P. Schützenberger, Théorie géométrique des polynômes Eulériens. Lecture Notes Math. 138 (1970). [CrossRef] [Google Scholar]
  19. C. Defant, Fertility numbers. J. Comb. 11 (2020) 527–548. [MathSciNet] [Google Scholar]
  20. C. Defant, Fertility monotonicity and average complexity of the stack-sorting map. Eur. J. Combin. 93 (2021) 103276. [CrossRef] [Google Scholar]
  21. L. Lichev, Lower bound on the running time of Pop-Stack sorting on a random permutation. Available at https://arxiv.org/abs/2212.09316. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.