Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 29, Number 6, 1995
Page(s) 487 - 508
DOI https://doi.org/10.1051/ita/1995290604871
Published online 01 February 2017
  1. 1. D. BARTH, Réseaux d'interconnexion : Structures et Communications, Thèse de Doctorat, LaBRI, Université Bordeaux-I, 351 cours de la Libération, 33405 Talence, France, janvier 1994. [Google Scholar]
  2. 2. D. BARTH, F. PELLEGRINI, A. RASPAUD and J. ROMAN, On Bandwidth, Cutwidth, and Quotient graphs, Research report 814-94, LaBRI, Université Bordeaux-I, 351 cours de la Libération, 33405 Talence, France, mars 1994. [Google Scholar]
  3. 3. A. BEL HALA, Congestion optimale du plongement de l'hypercube H (n) dans la chaîne P (2n), Rairo Informatique Théorique et Applications, 1993, 27 (4), pp. 1-17. [EuDML: 92461] [Zbl: 0803.68091] [Google Scholar]
  4. 4. A. BEL HALA, Communications dans les réseaux d'interconnexion : plongements optimaux de l'hypercube. Thèse de Doctorat, LaBRI, Université Bordeaux-I, 351 cours de la Libération, 33405 Talence, France, janvier 1995. [Google Scholar]
  5. 5. C. BERGE, Graphs and Hypergraphs, North Holland Publishing, 1973. [Zbl: 0254.05101] [Google Scholar]
  6. 6. P. Z. CHINN, J. CHVÀTALOVÀ, A. K. DEWDNEY and N. E. GIBBS, The Bandwidth Problem for Graphs and Matrices, A survey, Journal of Graph Theory, 1982, 6, pp. 223-254. [MR: 666794] [Zbl: 0494.05057] [Google Scholar]
  7. 7. F. R. K. CHUNG, The Theory and Applications of Graphs, chapter Some Problems and Results in Labelling of Graphs, pp. 255-263, John Wiley, 1981. [MR: 634531] [Zbl: 0468.05065] [Google Scholar]
  8. 8. R. FELDMANN and W. UNGER, The Cube-Connected Cycles network is a subgraph of the Butterfly network, Parallel Processing Letters, 1992, 2 (1), pp. 13-19. [Google Scholar]
  9. 9. A. FELLER, Automatic layout of low-cost quick-turnaround random-logic customs LSI devices, In Proc. 13th Design Automation Conf., pp. 79-85, San Francisco, 1976. [Google Scholar]
  10. 10. M. R. GAREY and D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-completeness, W. H. Freeman, San Francisco, 1979. [MR: 519066] [Zbl: 0411.68039] [Google Scholar]
  11. 11. F. GAVRIL, Some NP-complete problems on graphs, In Proc. 11th conference on information sciences and Systems, pp. 91-95, John Hopkins University, Baltimore. [Google Scholar]
  12. 12. N. E. GIBBS, W. G. POOLE and P. K. STOCKMEYER, A comparison of several bandwidth and profile reduction algorithms, ACM Trans. Math. Software, 1976, 2, pp. 322-330. [Zbl: 0345.65014] [Google Scholar]
  13. 13. E. M. GURARI and I. H. SUDBOROUGH, Improved dynamic algorithms for bandwidth minimization and the mincut linear arrangement problem, Journal of Algorithms, 1984, 5, pp. 531-546. [MR: 769981] [Zbl: 0556.68012] [Google Scholar]
  14. 14. L. H. HARPER, Optimal assignement of number of vertices, J. SIAM, 1964, 12, pp. 131-135. [Zbl: 0222.94004] [Google Scholar]
  15. 15. L. H. HARPER, Optimal numberings and isoperimetric problems on graphs, Journal of Combinatorial Theory, 1966, 1, pp. 385-393. [MR: 200192] [Zbl: 0158.20802] [Google Scholar]
  16. 16. R. KOCK, T. LEIGHTON, B. MAGGS, S. RAO and A. ROSENBERG, Work-preserving emulations of fixed-connection networks, In Proc. 21st Annual Symposium on Theory of Computing, pp. 227-240, ACM, 1989. [Google Scholar]
  17. 17. T. H. LAI and A. S. SPRAGUE, Placement of the processors of a hypercube, Technical report, 1988. [Google Scholar]
  18. 18. F. T. LEIGHTON, Complexity issues in VLSI. Optimal layouts for the shuffle exchange graph and other networks, in Foundations of Computing Series, The MIT press, 1983. [Google Scholar]
  19. 19. F. T. LEIGHTON, Introduction to Parallel Algorithms and Architectures: arrays, trees, hypercubes, Morgan Kaufman Publisher, 1992. [MR: 1137272] [Zbl: 0743.68007] [Google Scholar]
  20. 20. B. MONIEN and H. SUDBOROUGH, Embedding one interconnection network in another, Computing Supplements, 1990, 7, pp. 257-282. [MR: 1059934] [Zbl: 0699.68017] [Google Scholar]
  21. 21. K. NAKANO, W. CHEN, T. MASUZAWA, K. HAGIHARA and N. TOKURA, Cut width and bisection width of hypercube graph, IEICE Transactions, J73-A, (4), pp. 856-862, april 1990, In Japanese. [Google Scholar]
  22. 22. C. H. PAPADIMITRIOU, The NP-completeness of the bandwidth minimization problem, Computing, 1976, 16, pp. 263-270. [MR: 411243] [Zbl: 0321.65019] [Google Scholar]
  23. 23. F. PELLEGRINI, Bounds for the bandwidth of the d-ary de Bruijn graph, Parallel Processing Letters. Special Number on Interconnection Networks, 1993, 3 (4), pp. 431-443. [Google Scholar]
  24. 24. F. PELLEGRINI, Application de méthodes de partition à la résolution de problèmes de graphes issus du parallélisme, Thèse de Doctorat, LaBRI, Université Bordeaux-I, 351 cours de la Libération, 33405 Talence, France, janvier 1995. [Google Scholar]
  25. 25. G. PERSKY, D. DEUTSCH and D. SCHWEIKERT, LTX-A minicomputer-based system for automated LSI layout, J. Design Automation and Fault Tolerant Computing, 1977, 1, pp. 217-255. [Google Scholar]
  26. 26. F. PREPARATA and J. VUILLEMIN, The Cube-Connected Cycles: a versatile network for parallel computation, Communications of the ACM, May 1981, 24 (5), pp. 300-309. [MR: 614176] [Google Scholar]
  27. 27. F. SHAHROKHI and L. A. SZEKELY, An algebraic approach to the uniform concurrent multicommodity flow. Theory and applications, Technical Report CRPDC-91-4, University of North Texas, 1991. [Google Scholar]
  28. 28. W. F. SMITH and I. ARANY, Another algorithm for reducing bandwidth and profile of a sparse matrix, In Proc. AFIPS 1976 NCC, pp. 341-352, Montvale, New Jersey, 1976, AFIP Press. [Google Scholar]
  29. 29. S. TRIMBERG, Automating chip layout, IEEE Spectrum, pp. 38-45, 1982. [Google Scholar]
  30. 30. H. YOSHIZAWA, H. KAWANISHI and K. KANI, A heuristic procedure for ordering MOS arrays, In Proc. of Design Automation Conference, pp. 384-393, 1975. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.