Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 29, Number 6, 1995
Page(s) 471 - 485
DOI https://doi.org/10.1051/ita/1995290604711
Published online 01 February 2017
  1. 1. J. L. BALCÁZAR, J. DIÁZ and J. GABARRÓ, Structural Complexity I and II, EATCS Monographs on Theoretical Computer Science, Vol. 11 and Vol. 22, (Eds. W. Brauer, G. Rozenberg, A. Salomaa), Springer-Verlag, Berlin-Heidelberg, 1988 & 1900. [MR: 1047862] [Zbl: 0638.68040] [Google Scholar]
  2. 2. J. DASSOW, J. HROMKOVIC, J. KARHUMAKI, B. ROVAN and A. SLOBODOVÁ, On the power of synchronization in parallel computations, Proc. of the 14th Symposium on Mathematical Foundations of Computer Science, MFCS'89, Lect. Notes Comput. Sci., 379, Springer-Verlag, 1989, pp. 196-206. [MR: 1036799] [Zbl: 0755.68045] [Google Scholar]
  3. 3. A. K. CHANDRA, D. C. KOZEN and L. J. STOCKMEYER, Alternation, J. Assoc. Comput. Math., 1981, 28, pp. 114-133. [MR: 603186] [Zbl: 0473.68043] [Google Scholar]
  4. 4. F. GÉCSEG and M. STEINBY, Tree automata, Akadémiai Kiadó, Budapest, 1984. [MR: 735615] [Zbl: 0537.68056] [Google Scholar]
  5. 5. J. HROMKOVIČ, J. KARHUMAKI, B. ROVAN and A. SLOBODOVÁ, On the power of synchronization in parallal computations, Discrete Appl. Math., 1991, 32, pp. 155-182. [MR: 1120667] [Zbl: 0734.68036] [Google Scholar]
  6. 6. J. HROMKOVIČ, B. ROVAN and A. SLOBODOVÁ, Deterministic versus nondeterministic space in ternis of synchronized alternating machines, Theory. Comput. Sci., 1994, 132, pp. 319-336. [MR: 1290547] [Zbl: 0821.68056] [Google Scholar]
  7. 7. G. ISTRATE, The strong equivalence of ETOL grammars. In: Developments in Language Theory, G. Rozenberg and A. Salomaa (eds.), World, Scientific, 1994, pp. 81-89. [Google Scholar]
  8. 8. N. JONES and S. SKYUM, Complexity of some problems concerning L Systems, Math. Systems Theory, 1979, 13, pp. 29-43. [MR: 548547] [Zbl: 0449.68038] [Google Scholar]
  9. 9. K. - J. LANGE and M. SCHUDY, The complexity of the emptiness problem for EOL Systems. In: Lindenmayer Systems; Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology, G. Rozenberg and A. Salomaa (eds.), Springer, 1992, pp. 167-175. [MR: 1226691] [Zbl: 0769.68064] [Google Scholar]
  10. 10. R. MCNAUGHTON, Parenthesis grammars, J. Assoc. Comput. Mach., 1967, 14, pp. 490-500. [MR: 234781] [Zbl: 0168.01206] [Google Scholar]
  11. 11. V. NIEMI, A normal form for structurally equivalent EOL grammars. In: Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology, G. Rozenberg and A. Salomaa (eds.), Springer-Verlag, 1992, pp. 133-148. [MR: 1226689] [Zbl: 0769.68073] [Google Scholar]
  12. 12. T. OTTMANN and D. WOOD, Defining families of trees with EOL grammars, Discrete Applied Math., 1991, 32, pp. 195-209. [MR: 1120669] [Zbl: 0746.68054] [Google Scholar]
  13. 13. T. OTTMANN and D. WOOD, Simplifications of EOL grammars. In Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology, G. Rozenberg and A. Salomaa (eds)., Springer-Verlag, 1992, pp. 149-166. [MR: 1226690] [Zbl: 0769.68074] [Google Scholar]
  14. 14. M. PAULL and S. UNGER, Structural equivalence of context-free grammars, J. Comput. System Sci., 1968, 2, pp. 427-463. [MR: 241203] [Zbl: 0179.02301] [Google Scholar]
  15. 15. G. ROZENBERG and A. SALOMAA, The Mathematical Theory of L Systems, Academic Press, New York, 1980. [MR: 561711] [Zbl: 0508.68031] [Google Scholar]
  16. 16. K. SALOMAA and S. Yu, Decidability of structural equivalence of EOL grammars, Theoret Comput. Sci., 1991, 82, pp. 131-139. [MR: 1112113] [Zbl: 0729.68039] [Google Scholar]
  17. 17. K. SALOMAA, D. WOOD and S. Yu, Structural equivalence and ETOL grammars, Proc. of the 9th Conference on Fundamentals of Computation Theory, FCT'93, Lect. Notes Comput. Sci., 710, Springer-Verlag, 1993, pp. 430-439. [Zbl: 0794.68093] [Google Scholar]
  18. 18. H. SEIDL, Deciding equivalence of finite tree automata, SIAM J. Comput., 1990, 19, pp. 424-437. [MR: 1041537] [Zbl: 0699.68075] [Google Scholar]
  19. 19. A. SLOBODOVÁ, Communication for alternating machines, Acta Inform., 1992, 29, pp. 425-441. [MR: 1184436] [Zbl: 0769.68022] [Google Scholar]
  20. 20. J. W. TATCHER, Tree automata: an informal survey. In: Currents in the Theory of Computing, A. V. Aho (ed.), Prentice Hall, Englewood Cliffs, NJ, 1973, pp. 143-172. [MR: 426502] [Google Scholar]
  21. 21. J. VAN LEEUWEN, The membership question for ETOL languages is polynomially complete, Inform. Process. Lett., 1975, 3, pp. 138-143. [MR: 471461] [Zbl: 0309.68065] [Google Scholar]
  22. 22. J. VAN LEEUWEN, The tape-complexity of context-independent developmental languages, 7. Comput System. Sci., 1975, 11, pp. 203-211. [MR: 381397] [Zbl: 0314.68017] [Google Scholar]
  23. 23. J. WIEDERMANN, On the power of synchronization, J. Inf. Process. Cybern. EIK, 1989, 25, pp. 499-506. [MR: 1044337] [Zbl: 0689.68074] [Google Scholar]
  24. 24. D. WOOD, Theory of Computation, John Wiley & Sons, New York, 1987. (Second edition, 1996, in preparation.) [Zbl: 0734.68001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.