Open Access
| Issue |
RAIRO-Theor. Inf. Appl.
Volume 59, 2025
Generation, enumeration and tiling
|
|
|---|---|---|
| Article Number | 11 | |
| Number of page(s) | 22 | |
| DOI | https://doi.org/10.1051/ita/2025011 | |
| Published online | 15 October 2025 | |
- S. Wolf Golomb, Checker boards and polyominoes. Amer. Math. Monthly 61 (1054) 675–682. [Google Scholar]
- E.D. Demaine, J.S.B. Mitchell and J. O’Rourke, The open problems project. http://cs.smith.edu/~jorourke/TOPP. [Google Scholar]
- I. Jensen, Counting polyominoes: a parallel implementation for cluster Computing, in Proceedings of the 2003 International Conference on Computational Science: Part III, ICCS’03. Springer-Verlag (2003) 203–212. [Google Scholar]
- G. Barequet and G. Ben-Shachar, Counting polyominoes, revisited. 2024 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX) (2024) 133–143. [Google Scholar]
- M. Bousquet-Melou, Convex polyominoes and heaps of segments. J. Phys. A Math. Gen. 25 (1992) 1925–1934. [Google Scholar]
- M. Bousquet-Mélou, A method for the enumeration of various classes of column-convex polygons. Discrete Math. 154 (1996) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
- G. Castiglione and A. Restivo, Ordering and convex polyominoes, in MCU 2004, vol. 3354 of Lecture Notes in Computer Science. Springer (2005) 128–139. [Google Scholar]
- A. Del Lungo, M. Nivat, R. Pinzani and S. Rinaldi. A bijection for the total area of parallelogram polyominoes. Discret. Appl. Math. 144 (2004) 291–302. [CrossRef] [Google Scholar]
- D.A. Klarner, S.W. Golomb and G. Barequet, Polyominoes, in Handbook of Discrete and Computational Geometry, edited by J. O’Rourke J.E. Goodman and C. D. Tóth. CRC Press Boca Raton, FL (2017) 359–380. [Google Scholar]
- A. Del Lungo, A. Frosini and S. Rinaldi, Eco method and the exhaustive generation of convex polyominoes, in DMTC 2003, vol. 6795 of Lecture Notes in Computer Science. Springer (2003) 129–140. [Google Scholar]
- A. Del Lungo, E. Duchi, A. Frosini and S. Rinaldi, On the generation and enumeration of some classes of convex polyominoes. Electron. J. Comb. 11 (2004) 1–46. [Google Scholar]
- E. Formenti and P. Massazza, From tetris to polyominoes generation. Electron. Notes Discrete Math. 59 (2017) 79–98. [Google Scholar]
- E. Formenti and P. Massazza, On the generation of 2-polyominoes, in DCFS 2018, vol. 10952 of Lecture Notes in Computer Science. Springer (2018) 101–113. [Google Scholar]
- S. Brocchi, G. Castiglione and P. Massazza, On the exhaustive generation of k-convex polyominoes. Theor. Comput. Sci. 664 (2017) 54–66. [Google Scholar]
- G. Castiglione and P. Massazza, An efficient algorithm for the generation of Z-convex polyominoes, in IWCIA 2014, vol. 8466 of Lecture Notes in Computer Science. Springer (2014) 51–61. [Google Scholar]
- V. Dorigatti and P. Massazza, On counting l-convex polyominoes, in 22nd Italian Conference on Theoretical Computer Science, vol. 3072 of CEUR Workshop Proceedings (2021) 193–198. [Google Scholar]
- A.J. Guttmann and V. Kotěšovec, A numerical study of L-convex polyominoes and 201-avoiding ascent sequences. Sémin. Lothar. Combin. 87B (2023) 1–11. [Google Scholar]
- G. Castiglione and A. Restivo, Reconstruction of l-convex polyominoes. Electron. Notes Discrete Math. 12 (2003) 290–301. 9th International Workshop on Combinatorial Image Analysis. [CrossRef] [Google Scholar]
- E. Duchi, S. Rinaldi and G. Schaeffer, The number of Z-convex polyominoes. Adv. Appl. Math. 40 (2008) 54–72. [CrossRef] [MathSciNet] [Google Scholar]
- A.J. Guttmann and P. Massazza, Asymptotics of z-convex polyominoes. RAIRO Theor. Informatics Appl. 58 (2024) 12. [Google Scholar]
- R.P. Stanley, Enumerative Combinatorics, vol. 1 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press (2011). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
