Open Access
| Issue |
RAIRO-Theor. Inf. Appl.
Volume 59, 2025
Generation, enumeration and tiling
|
|
|---|---|---|
| Article Number | 10 | |
| Number of page(s) | 13 | |
| DOI | https://doi.org/10.1051/ita/2025012 | |
| Published online | 02 October 2025 | |
- M. Gardner, Mathematical games. Sei. Am. 236 (1977) 110-121. [Google Scholar]
- M. Gardner, Penrose Tiles to Trapdoor Ciphers. W.H. Freeman & Co. (1988). [Google Scholar]
- M. Baake and U. Grimm, Aperiodic Order. Vol 1. A Mathematical Invitation, vol. 149 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2013). [Google Scholar]
- B. Grünbaum and G.C. Shephard, Tilings and Patterns. W.H. Freeman and Company, New York (1987). [Google Scholar]
- M. Senechai, Quasicrystals and Geometry. Cambridge University Press (1995). [Google Scholar]
- C. Porrier and A. Blondin Masse, The leaf function of graphs associated with Penrose tilings. Int. J. Graph Comput. 1 (2020) 1-24. [Google Scholar]
- C.L. Henley, Sphere Packings and Local Environments in Penrose tilings. Phys. Rev. B 34 (1986) 797-816. Reprinted in [SO87]. [Google Scholar]
- Z. Olamy and M. Kiernan, A two dimensional aperiodic dense tiling. J. Phys. France 50 (1989) 19-33. [Google Scholar]
- E. Lord, Quasicrystals and Penrose patterns. Gurr. Sei. 61 (1991) 313-319. [Google Scholar]
- W. Steurer, Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Zeitsch. Kristallogr. Crystal. Mater. 219 (2004) 391-446. [Google Scholar]
- C. Porrier, A. Goupil and Goupil and A. Blondin Masse, The leaf function of Penrose P2 graphs. Discrete Math. Theoret. Comput. Sei. 27 (2025) 9. [Google Scholar]
- R.A. Al Ajlouni, The global long-range order of quasi-periodic patterns in Islamic architecture. Acta Crystallogr. A 68 (2012) 235-243. [Google Scholar]
- P.J. Lu and P.J. Steinhardt, Decagonal and quasi-crystalline tilings in medieval Islamic architecture. Science 315 (2007) 1106-1110. [Google Scholar]
- C. Porrier, HBS tilings extended: state of the art and novel observations. Electron. Proc. Theoret. Comput. Sei. 403 (2024) 156-163. [Google Scholar]
- R. Penrose, The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10 (1974) 266-271. Reprinted in [SO87]. [Google Scholar]
- R. Penrose, Pentaplexity. Math. Intelligencer 2 (1978) 32-37. [Google Scholar]
- R. Penrose, Set of tiles for covering a surface. United States Patent, (4,133,152) (1979). [Google Scholar]
- M. Baake, A Guide to Mathematical Quasicrystals (1999). [Google Scholar]
- F. Gähler, M. Baake and Baake and M. Schlottmann, Binary tiling quasicrystals and matching rules. Phys. Rev. B 50 (1994) 12458-12467. [Google Scholar]
- N.G. de Bruijn, Algebraic theory of Penrose’s non-periodic tilings of the plane. Math. Proc. A84 (1981) 39-66. Reprinted in [SO87]. [Google Scholar]
- W. Steurer and S. Deloudi, Crystallography of Quasicrystals: Concepts, Methods and Structures. Springer Series in Materials Science No. 126, 1st edn. Springer (2009). [Google Scholar]
- C.L. Henley, Random Tiling Models (1991) 429-524. Chapter of [DS91]. [Google Scholar]
- P. Gummelt, Decagon covering model and equivalent HBS-tiling model. Zeitsch. Kristallogr. Crystal. Mater. 221 (2006) 582-588. [Google Scholar]
- R. Liick, Penrose sublattices. J. Non-Crystal. Solids 117-118 (1990) 832-835. [Google Scholar]
- W. Steurer, Gummelt versus Liick decagon covering and beyond. Implications for decagonal quasicrystals. Acta Crystallogr. A 77 (2021) 36-41. [Google Scholar]
- W. Steurer, Quasicrystals: what do we know? What do we want to know? What can we know? Acta Crystallogr. A 74 (2018) 1-11. [Google Scholar]
- T. Fernique and V. Lutfalla, Geometrical Penrose Tilings are Characterized by their 1-atlas. Theoret. Compu. Sci. 1022 (2024) 114883. [Google Scholar]
- J. Mazâc, Patch frequencies in rhombic Penrose tilings. Acta Crystallogr. A 79 (2003) 399-411. [Google Scholar]
- B. Griinbaum and G.C. Shephard, Tilings and Patterns, 2nd edn. Dover Publications (2016). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
