Open Access
| Issue |
RAIRO-Theor. Inf. Appl.
Volume 59, 2025
|
|
|---|---|---|
| Article Number | 4 | |
| Number of page(s) | 11 | |
| DOI | https://doi.org/10.1051/ita/2025003 | |
| Published online | 19 August 2025 | |
- J. Gastwirth, A probability model of a pyramid scheme. Am. Statist. 31 (1977) 79–82. [Google Scholar]
- J.W. Moon, The distance between nodes in recursive trees. Lond. Math. Soc. Lect. Notes Ser. 13 (1974) 125–132. [Google Scholar]
- D. Chan, B. Hughes, A. Leong and W. Reed, Stochastically evolving networks. Phys. Rev. E 68 (2003). [Google Scholar]
- M. Javanian, Limit distribution of the degrees in scaled attachment random recursive trees. Bull. Iran. Math. Soc. 39 (2013) 1031–1036. [Google Scholar]
- M. Javanian and M.Q. Vahidi-Asl, Depth of nodes in random recursive k-ary trees. Inform. Process. Lett. 98 (2006) 115–118. [Google Scholar]
- P. Zhang, On several properties of plain-oriented recursive trees, Probability in the Engineering and Informational Sciences, 35 (2021), 839–857. [Google Scholar]
- R.T. Smythe and H.M. Mahmoud, A survey of recursive trees. Theory Probab. Math. Statist. 51 (1995) 1–27. [Google Scholar]
- H.M. Mahmoud, R.T. Smythe and J. Szymanski, On the structure of random plane-oriented recursive trees and their branches. Random Struct. Algor. 4 (1993) 151–176. [Google Scholar]
- H.M. Mahmoud, Profile of random exponential recursive trees. Methodol. Comput. Appl. Probab. 24 (2022) 259–275. [Google Scholar]
- R. Aguech, S. Bose, H.M. Mahmoud and Y. Zhang, Some properties of exponential trees. Int. J. Comput. Math.: Comput. Syst. Theory 3 (2021) 16–32. [Google Scholar]
- M. Ghasemi, M. Javanian and R. Imany Nabiyyi, Note on the exponential recursive k-ary trees, RAIRO - Theoretical Informatics and Applications, 57 (2023), 1–14. [Google Scholar]
- M. Javanian and R. Aguech, On the protected nodes in exponential recursive trees. Discrete Math. Theor. Comput. Sci. 25 (2024) 1–16. [Google Scholar]
- M. Javanian and M.Q. Vahidi-Asl, Note on the outdegree of a node in random recursive trees. J. Appl. Math. Comput. 13 (2003) 99–103. [Google Scholar]
- Q. Feng and Z. Hu, On the Zagreb index of random recursive trees. J. Appl. Probab. 48 (2011) 1189–1196. [Google Scholar]
- P. Zhang, The Zagreb index of several random models. J. Stoch. Anal. 3 (2022) 1–16. [Google Scholar]
- R. Neininger, On a multivariate contraction method for random recursive structures with applications to quicksort. Random Struct. Algor. 19 (2001) 498–524. [CrossRef] [Google Scholar]
- U. Roesler and L. Rueschendorf, The contraction method for recursive algorithms. Algorithmica 29 (2001) 3–33. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
