Open Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 58, 2024
Article Number 3
Number of page(s) 7
DOI https://doi.org/10.1051/ita/2024003
Published online 01 March 2024
  1. J. Kari, and M. Volkov, Černý’s conjecture and the road colouring problem, in Handbook of Automata Theory, Vol. I, edited by J.-É. Pin. EMS Publishing House (2021) 525–565. [CrossRef] [Google Scholar]
  2. M.V. Volkov, Synchronization of finite automata. Russ. Math. Surv. 77 (2022) 819–891. [CrossRef] [Google Scholar]
  3. G. Thierrin, Simple automata. Kybernetika (Praha) 6 (1970) 343–350. [Google Scholar]
  4. B. Steinberg, A theory of transformation monoids: combinatorics and representation theory. Electron. J. Combinatorics 17 (2010) article #R164. [CrossRef] [Google Scholar]
  5. I.K. Rystsov, Primitive and irreducible automata. Cybernet. Syst. Anal. 51 (2015) 506–513. [CrossRef] [Google Scholar]
  6. J. Almeida, and E. Rodaro, Semisimple synchronizing automata and the Wedderburn–Artin Theory. Int. J. Found. Comput. Sci. 27 (2016) 127–145. [CrossRef] [Google Scholar]
  7. A. Restivo, and R. Vaglica, A graph theoretic approach to automata minimality. Theor. Comput. Sci. 429 (2012) 282–291. [CrossRef] [Google Scholar]
  8. S. Davies, Primitivity, uniform minimality, and state complexity of boolean operations. Theory Comput. Syst. 62 (2018) 1952–2005. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Černý, Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikalny Časopis Slovenskej Akadémie Vied 14 (1964) 208–216. [In Slovak. English translation: A note on homogeneous experiments with finite automata. J. Automata Lang. Combinatorics 24 (2019) 123–132.] [Google Scholar]
  10. F. Arnold, and B. Steinberg, Synchronizing groups and automata. Theor. Comput. Sci. 359 (2006) 101–110. [CrossRef] [Google Scholar]
  11. P.M. Neumann, Primitive permutation groups and their section-regular partitions. Michigan Math. J. 58 (2009) 309–322. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Ara,újo, W. Bentz and P.J. Cameron, Groups synchronizing a transformation of non-uniform kernel. Theor. Comput. Sci. 498 (2013) 1–9. [CrossRef] [Google Scholar]
  13. J. Ara,újo and P.J. Cameron, Primitive groups synchronize non-uniform maps of extreme ranks. J. Combinatorial Theory, Ser. B 106 (2014) 98–114. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Ara,újo, W. Bentz, P.J. Cameron, G. Royle and A. Schaefer, Primitive groups, graph endomorphisms and synchronization. Proc. London Math. Soc. 113 (2016) 829–867. [CrossRef] [MathSciNet] [Google Scholar]
  15. I.K. Rystsov, Marek Szykula, Primitive automata that are synchronizing. ArXiv (2023) https://arxiv.org/abs/2307.01302. [Google Scholar]
  16. J. Ara,újo, P.J. Cameron and B. Steinberg, Between primitive and 2-transitive: Synchronization and its friends. EMS Surv. Math. Sci. 4 (2017) 101–184. [CrossRef] [MathSciNet] [Google Scholar]
  17. I. K. Rystsov, Quasioptimal bound for the length of reset words for regular automata. Acta Cybernetica 12 (1995), 145–152. [MathSciNet] [Google Scholar]
  18. I.K. Rystsov, Estimation of the length of reset words for automata with simple idempotents. Cybernet. Syst. Anal. 36 (2000) 339–344. [CrossRef] [Google Scholar]
  19. K. Culik, II, J. Karhumäki and J. Kari, A note on synchronized automata and Road Coloring Problem. Int. J. Found. Comput. Sci. 13 (2002) 459–471. [CrossRef] [Google Scholar]
  20. A.N. Trahtman, The road coloring problem. Isr. J. Math. 172 (2009) 51–60. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.