Open Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 58, 2024
Article Number 2
Number of page(s) 14
DOI https://doi.org/10.1051/ita/2024002
Published online 19 February 2024
  1. L. Boasson and M. Nivat, Adherences of languages. J. Comput. Syst. Sci. 20 (1980) 285–309. [CrossRef] [Google Scholar]
  2. L. Boasson and M. Nivat, Centers of languages, in Theoretical Computer Science, Vol. 104 of Lecture Notes in Computer Science, edited by P. Deussen. Springer, Heidelberg, (1981) 245–251. [Google Scholar]
  3. C.S. Calude, H. Jürgensen and L. Staiger, Topology on words. Theoret. Comput. Sci. 410 (2009) 2323–2335. [CrossRef] [Google Scholar]
  4. M. Davis, Infinite games of perfect information, in Advances in Game Theory, edited by M. Dresher, L.S. Shapley and A.W. Tucker. Annals of Mathematics Studies, No. 52. Princeton University Press, Princeton, NJ (1964) 85–101. [Google Scholar]
  5. K. Kuratowski, Topology I. Academic Press, New York (1966). [Google Scholar]
  6. D. Perrin and J.-É. Pin, Infinite Words, Vol. 141 of Pure and Applied Mathematics. Elsevier, Amsterdam (2004). [Google Scholar]
  7. H. Prodinger, Topologies on free monoids induced by closure operators of a special type. RAIRO Inform. Théor. Appl. 14 (1980) 225–237. [CrossRef] [EDP Sciences] [Google Scholar]
  8. H. Prodinger, Topologies on free monoids induced by families of languages. RAIRO Inform,. Théor. Appl. 17 (1983) 285–290. [CrossRef] [EDP Sciences] [Google Scholar]
  9. H. Prodinger and F.J. Urbanek, Language operators related to Init. Theor. Comput. Sci. 8 (1979) 161–175. [Google Scholar]
  10. H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics. PWN, Warszawa (1963). [Google Scholar]
  11. R.R. Redziejowski, Infinite-word languages and continuous mappings. Theor. Comput. Sci. 43 (1986) 59–79. [CrossRef] [Google Scholar]
  12. T. Richter and L. Staiger, Topological language operators, in Proceedings 18. Theorietag Automaten und Formale Sprachen. Institut für Informatik, Universität Gießen, Gießen (2008) 109–114. [Google Scholar]
  13. M.B. Smyth, Topology, in Handbook of Logic in Computer Science, Vol. 1, edited by S. Abramsky, D.M. Gabbay and Thomas S.E. Maibaum. Oxford University Press, New York (1992) 641–761. [CrossRef] [Google Scholar]
  14. L. Staiger, Sequential mappings of ω-languages. RAIRO Inform. Théor. Appl. 21 (1987) 147–173. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. L. Staiger, ω-languages, in Handbook of Formal Languages, Vol. 3, edited by Grzegorz Rozenberg and Arto Salomaa. Springer, Berlin (1997) 339–387. [Google Scholar]
  16. L. Staiger, Joint topologies for finite and infinite words, in Developments in Language Theory, Vol. 6224 of Lecture Notes in Computer Science, edited by Y. Gao, H. Lu, S. Seki and S. Yu. Springer (2010) 442–443. [Google Scholar]
  17. L. Staiger and W. Nehrlich, The centers of context-sensitive languages, in Mathematical Foundations of Computer Science, Vol. 233 of Lecture Notes in Comput. Sci., edited by J. Gruska, B. Rovan and J. Wiedermann. Springer, Berlin (1986) 594–601. [Google Scholar]
  18. W. Thomas, Automata on infinite objects, in Handbook of Theoretical Computer Science, Vol. B, edited by J. van Leeuwen. North Holland, Amsterdam (1990) 133–192. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.