Open Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 58, 2024
Article Number 17
Number of page(s) 8
DOI https://doi.org/10.1051/ita/2024014
Published online 25 November 2024
  1. G. Hahn and C. Tardif, Graph homomorphisms: structure and symmetry, in Graph Symmetry, edited by G. Hahn, G. Sabidussi. Springer, Dordrecht (1997) 107–166. [CrossRef] [Google Scholar]
  2. C. Godsil and G.F. Royle, Algeraic Graph Theory. Springer, New York, NY (2001). [CrossRef] [Google Scholar]
  3. A. Dochtermann and A. Singh, Homomorphism complexes, reconfiguration, and homotopy for directed graphs. Eur. J. Combin. 110 (2023) 103704. [CrossRef] [Google Scholar]
  4. S. Brandt, Y.-J. Chang, J. Grebík, C. Grunau, V. Rozhoň and Z. Vidnyánszky, On homomorphism graphs. Forum Math. Pi 12 (2024) e10. [CrossRef] [Google Scholar]
  5. B. Alaya, L. Laouamer and N. Msilini, Homomorphic encryption systems statement: trends and challenges. Comput. Sci. Rev. 36 (2020) 100235. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. Nguyen and T. Maehara, Graph homomorphism convolution, in Proceedings of the 37th International Conference on Machine Learning, PMLR 119 (2020) 7306–7316. [Google Scholar]
  7. L. Ruiz, F. Gama and A. Ribeiro, Graph neural networks: architectures, stability, and transferability. Proc. IEEE 109 (2021) 660–682. [CrossRef] [Google Scholar]
  8. C. Gao, Q. Cheng, X. Li and S. Xia, Cloud-assisted privacy-preserving profile-matching scheme under multiple keys in mobile social network. Clust. Comput. 22 (2019) S1655–S1663. [CrossRef] [Google Scholar]
  9. B. Miao, S. Wang, L. Fu and X. Lin, De-anonymizability of social network: through the lens of symmetry, in Mobihoc’20: Proceedings of the 21st International Symppsium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, Boston, MA (2020) 71–80. [CrossRef] [Google Scholar]
  10. M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45 (2003) 167–256. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Menczer, S. Fortunato and C.A. Davis, A First Course in Network Science. Cambridge University Press, Cambridge (2020). [CrossRef] [Google Scholar]
  12. Y. Shang, A system model of three-body interactions in complex networks: consensus and conservation. Proc. R. Soc. A 478 (2022) 20210564. [CrossRef] [Google Scholar]
  13. M. Karoński, E.R. Scheinerman and K.B. Singer-Cohen, On random intersection graphs: the subgraph problem. Combin. Prob. Comput. 8 (1999) 131–159. [CrossRef] [Google Scholar]
  14. R. van der Hofstad, J. Komjáthy and V. Vadoon, Phase transition in random intersection graphs with communities. Random Struct. Alg. 60 (2022) 406–461. [CrossRef] [Google Scholar]
  15. D.P. Bertsekas, A. Nedinć and A.E. Ozdaglar, Convex Analysis and Optimization. Athena Scientific, Belmont, MA (2003) [Google Scholar]
  16. N. Olver, F. Schalekamp, S. van der Ster, L. Stougie and A. van Zuylen, A duality based 2-approximation algorithm for maximum agreement forest. Math. Program. 198 (2023) 811–853. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. M. Karimi-Mamaghan, M. Mohammadi, P. Meyer, A.M. Karimi-Mamaghan and E.-G. Talbi, Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. 296 (2022) 393–422. [CrossRef] [Google Scholar]
  18. G. Oliva, A.I. Rikos, A. Gasparri and C.N. Hadjicostis, Distributed negotiation for reaching agreement among reluctant players in cooperative multi-agent systems. IEEE Trans. Autom. Contr. 67 (2022) 4838–4845. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.