Issue
RAIRO-Theor. Inf. Appl.
Volume 58, 2024
Randomness and Combinatorics - Edited by Luca Ferrari & Paolo Massazza
Article Number 18
Number of page(s) 16
DOI https://doi.org/10.1051/ita/2024015
Published online 19 December 2024
  1. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, edited by R.E. Miller and J.W. Thatcher. Plenum Press (1972) 85-103. [CrossRef] [Google Scholar]
  2. C. Wang, E.L. Lloyd and M.L. Soffa, Feedback vertex sets and cyclically reducible graphs. J. ACM 32 (1985) 296-313. [CrossRef] [Google Scholar]
  3. C.L. Lu and C.Y. Tang, A linear-time algorithm for the weighted feedback vertex problem on interval graphs. Inform. Process. Lett. 61 (1997) 107-111. [CrossRef] [MathSciNet] [Google Scholar]
  4. Y.D. Liang. On the feedback vertex set problem in permutation graphs. Inform. Process. Lett. 52 (1994) 123-129. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Levy and D.W. Low, A contraction algorithm for finding small cycle cutsets. J. Algorithms 9 (1988) 470-493. [CrossRef] [MathSciNet] [Google Scholar]
  6. H.M. Lin and J.Y. Jou, On computing the minimum feedback vertex set of a directed graph by contraction operations. IEEE Trans. CAD Integrated Circuits Syst. 19 (2000) 295-307. [CrossRef] [Google Scholar]
  7. S.T. Chakradhar, A. Balakrishnan and V.D. Agrawal, An exact algorithm for selecting partial scan flip-flops, in Proceedings of the 31st Design Automation Conference (1994) 81-86. [CrossRef] [Google Scholar]
  8. P. Galinier, E. Lemamou and W. Bouzidi, Applying local search to the feedback vertex set problem. J. Heuristics (2013), in press. [Google Scholar]
  9. P.M. Pardalos, T. Qian and M.G.C. Resende, A greedy randomized adaptive search procedure for feedback vertex set. J. Combin. Optim. 2 (1999) 399-412. [CrossRef] [Google Scholar]
  10. R. Ashar and S. Malik, Implicit computation of minimum-cost feedback vertex sets for partial scan and other applications. Proceedings of the 31st Design Automation Conference (1994) 77-80. [CrossRef] [Google Scholar]
  11. R. Fleischer, X. Wu and L. Yuan, Experimental Study of FPT Algorithms for the Directed Feedback Vertex Set Problem, Algorithms - ESA 2009, Lecture Notes in Computer Science, edited by A. Fiat and P. Sanders. Springer Berlin Heidelberg (2009) 611-622. [Google Scholar]
  12. F. Formin, S. Gaspers, A. Pyatkin and I. Razgon, On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52 (2008) 293-307. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Formin, P. Heggernes, D. Kratsch, C. Papadopoulos and Y. Villanger, Enumerating minimal subset feedback vertex sets, in Proceedings WADS’11 of the 12th International Conference on Algorithms and Data Structures (2011) 399-410. [CrossRef] [Google Scholar]
  14. M. Lapointe, A. Blondin Massé, P. Galinier, M. Lord and O. Marcotte, Enumerating minimum feedback vertex sets in directed graphs, in Bordeaux Graph Workshop, November 21st-24th, Bordeaux, France (2012) 101-102. [Google Scholar]
  15. R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35 (1986) 677-691. [CrossRef] [Google Scholar]
  16. S.-I. Minato, Zero-suppressed bdds for set manipulation in combinatorial problems, in Proceedings of the 30th international Design Automation Conference (1993) 272-277. [CrossRef] [Google Scholar]
  17. D.E. Knuth, Fun with BDDs. Stanford University Lecture. (2008) http://www.youtube.com/watch?v=axUgEAgrSB8. [Google Scholar]
  18. D.E. Knuth, Fun ‘with ZDDs. Stanford University Lecture. (2008) http://www.youtube.com/watch?v=axUgEAgrSB8. [Google Scholar]
  19. S. Yoon, C. Nardini, L. Benini and G. De Micheli Discovering coherent biclusters from gene expression data using zero-suppressed binary decision diagrams. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2 (2005) 339–354. [CrossRef] [PubMed] [Google Scholar]
  20. E. Loekito and J. Bailey, Fast mining of high dimensional expressive contrast patterns using zero-suppressed binary decision diagrams, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’06 (2006) 307-316. [CrossRef] [Google Scholar]
  21. O. Schroer and I. Wegener, The theory of zero-suppressed bdds and the number of knight’s tours. Formal Methods Syst. Des. 13 (1998) 235-253. [CrossRef] [Google Scholar]
  22. B. Becker, M. Behle, F. Eisenbrand and R. Wimmer, Bdds in a branch and cut framework, in Experimental and Efficient Algorithms, Proceedings of the 4th International Workshop on Efficient and Experimental Algorithms (WEA’05). Vol. 3503 of Lecture Notes in Computer Science (2005) 452-463. [Google Scholar]
  23. G.F. Luger and W.A. Stubblefield, Artificial Intelligence - Structures and Strategies for Complex Problem Solving, 2nd edn. Benjamin/Cummings (1993). [Google Scholar]
  24. V. Kumar and L.N. Kanal, Parallel branch-and-bound formulations for and/or tree search. Pattern Anal. Mach. Intell. IEEE Trans. PAMI-6 (1984) 768-778. [CrossRef] [Google Scholar]
  25. R. Kiesel and A. Schidler, A Dynamic MaxSAT-based Approach to Directed Feedback Vertex Sets, arXiv:2211.06109 (2022). [Google Scholar]
  26. G.S. Smith and R. Walford, The identification of a minimal feedback vertex set of a directed graph. IEEE Trans. Circuits Syst. 22 (1975) 9-15. [CrossRef] [Google Scholar]
  27. E. Trischler, Incomplete scan design with an automatic test generation methodology. Proc. Int. Test Conf. 1980 153-162. [Google Scholar]
  28. R. Bar-Yehuda, D. Geiger, J. Naor and R.M. Roth, Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput. 27 (1998) 942-959. [CrossRef] [MathSciNet] [Google Scholar]
  29. S. Harnad, The symbol grounding problem. Physica D: Nonlinear Phenomena 42 (1990) 335-346. [CrossRef] [Google Scholar]
  30. B. Boguraev and T. Briscoe, editors, Computational Lexicography for Natural Language Processing. Longman, London (1989). [Google Scholar]
  31. B. Boguraev and J. Pustejovsky, editors, Corpus Processing for Lexical Acquisition. MIT Press, Cambridge, MA (1996). [Google Scholar]
  32. O. Picard, M. Lord, A. Blondin Masse, O. Marcotte and S. Harnad, Hidden structure and function in the lexicon, in 10th International Workshop on Natural Language Processing and Cognitive Science - NLPCS (2013), submitted. [Google Scholar]
  33. C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998). [CrossRef] [Google Scholar]
  34. A. Blondin Masse et al., The dictionary game. Universite du Quebec a Montreal (2022) http://lexis.uqam.ca:8080/dictGame/index.jsp#no-back-button. [Google Scholar]
  35. P. Erdos and A. Renyi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17-61. [Google Scholar]
  36. S. Sathe, Python Web Graph Generator (2008) http://pywebgraph.sourceforge.net/. [Google Scholar]
  37. D. Chakrabarti, Y. Zhan and C. Faloutsos, R-MAT: a recursive model for graph mining. SIAM Int. Conf. Data Mining (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.