Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 30, Number 5, 1996
Page(s) 443 - 456
DOI https://doi.org/10.1051/ita/1996300504431
Published online 01 February 2017
  1. 1 A. V. AHO., J. E. HOPCROFT and J. D. ULLMAN, Data Structures and Algorithms, Addison-Wesley, Reading, MA, 1983. [MR: 666695] [Zbl: 0487.68005] [Google Scholar]
  2. 2 D. ARQUÈS, N. JANEY and X. G. VIENNOT Modélisation de la croissance et de la forme de structures arborescentes par matrice d'évolution. In Actes de MICAD'91, Paris, 1991, pp. 321-336. [Google Scholar]
  3. 3. L. DEVROYE, A note ontheprobabilistic analysis of Patricia trees, Random Structures and Algorithms, 1992, 3, pp. 203-214 [MR: 1151362] [Zbl: 0768.05083] [Google Scholar]
  4. 4. L. DEVROYE and P. KRUSZEWSKI, A note on the Horton-Strahler number for random trees, Information Processing Letters, 1994, 52, pp. 155-159. [MR: 1302588] [Zbl: 0809.05031] [Google Scholar]
  5. 5. A. P. ERSHOV, On programming of arithmetic operations, Communications of the ACM, 1958, 1, pp. 3-6. [Zbl: 0086.33203] [Google Scholar]
  6. 6. R. FAGIN, J. NIEVERGELT, N. PIPPENGER and H. R. STRONG, Extendible hashing - a fast access method for dynamic files, ACM Transactions on Database Systems, 1979, 4, pp. 315-344. [Google Scholar]
  7. 7. P. FLAJOLET, J. C. RAOULT and J. VUILLEMIN, The number of registers required for evaluating arithmetic expressions, Theoretical Computer Science, 1979, 9, pp. 99-125. [MR: 535127] [Zbl: 0407.68057] [Google Scholar]
  8. 8. J. FRANÇON, Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique, RAIRO Theoretical Informatics, 1984, 18, pp. 355-364. [EuDML: 92216] [MR: 775838] [Zbl: 0547.68041] [Google Scholar]
  9. 9. E. H. FREDKIN, Trie memory, Communications of the ACM, 1960, 3, pp. 490-500. [Google Scholar]
  10. 10. W. HOEFFDING, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association, 1963, 58, pp. 13-30. [MR: 144363] [Zbl: 0127.10602] [Google Scholar]
  11. 11. R. E. HORTON, Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Bulletin of the Geological Society of America, 1945, 56, pp. 275-370. [Google Scholar]
  12. 12. P. JACQUET and W. SZPANKOWSKI, Analysis of digital tries with Markovian dependency, IEEE Transactions on Information Theory, 1991, IT37, pp. 1470-1475. [Google Scholar]
  13. 13. R. KEMP, The average number of registers needed to evaluate a binary tree optimally, Acta Informatica, 1979, 11, pp. 363-372. [MR: 533482] [Zbl: 0395.68059] [Google Scholar]
  14. 14. D. E. KNUTH, The Art of Computer Programming. Sorting and Searching, volume 3, Addison-Wesley, Reading, MA, 1973. [Zbl: 0302.68010] [MR: 378456] [Google Scholar]
  15. 15. P. KRUSZEWSKI, A probabilistic exploration of the Horton-Strahler number for random binary trees, Master's thesis, School of Computer Science, McGill University, 1993. [Google Scholar]
  16. 16. P. A. LARSON, Dynamic hashing. BIT, 1978, 75, pp. 184-201. [MR: 483823] [Zbl: 0377.68026] [Google Scholar]
  17. 17. W. LITWIN, Trie hashing. In Proceedings of the ACM - SIGMOD Conf. MOD., Ann Arbor, Michigan, 1981. [Google Scholar]
  18. 18. A. MEIR and J. W. MOON, Stream lengths in random channel networks, Congressus Numerantium, 1980, 33, pp. 25-33. [MR: 681917] [Zbl: 0496.94020] [Google Scholar]
  19. 19. A. MEIR, J. W. MOON and J. R. POUNDER, On the order of random channel networks, SIAM Journal of Algebraic and Discrete Methods, 1980, 1, pp. 25-33. [MR: 563011] [Zbl: 0496.94020] [Google Scholar]
  20. 20. J. W. MOON, On Horton's law for random channel networks, Annals of Discrete Mathematics, 1980, 8, pp. 117-121. [MR: 597163] [Zbl: 0443.05035] [Google Scholar]
  21. 21. J. G. PENAUD, Matrice de ramification des arbres binaires, Discrete Applied Mathematics, 1991, 31, pp. 1-21. [MR: 1097523] [Zbl: 0732.05038] [Google Scholar]
  22. 22. B. PITTEL, Asymptotic growth of a class of random trees, Annals of Probability, 1985, 18, pp. 414-427. [MR: 781414] [Zbl: 0563.60010] [Google Scholar]
  23. 23. H. PRODINGER, Solution of a problem of Yekutieli and Mandelbrot, Technical report, Technical University of Vienna, Austria, 1995. [Google Scholar]
  24. 24. A. N. STRAHLER, Hypsometric (area-altitude) analysis of erosional topology, Bulletin of the Geological Society of America, 1952, 63, pp. 1117-1142. [Google Scholar]
  25. 25. J. VANNIMENUS and X. G. VIENNOT, Combinatorial Tools for the Analysis of Ramified Patterns, Journal of Statistical Physics, 1989, 54, pp. 1529-1539. [MR: 993071] [Google Scholar]
  26. 26. M. VAUCHAUSSADE de CHAUMONT, Nombre de Strahler des arbres, langages algébriques et dénombrement des structures secondaires en biologie moléculaire, PhD thesis, Université de Bordeaux I, 1985. [Google Scholar]
  27. 27. M. VAUCHAUSSADE de CHAUMONT and X. G. VIENNOT, Enumeration of RNAs secondary structures by complexity, Mathematics in Medicine and Biology, Lecture Notes in Biomathematics, 1985, 57, pp. 360-365. [Zbl: 0579.92012] [Google Scholar]
  28. 28. X. G. VIENNOT, Trees everywhere. In A. Arnold ed., Proceedings of the 15th Colloquium on Trees in Algebra and Programming, Copenhagen, Denmark, May 15-18, 1990, Lecture Notes in Computer Science, Springer-Verlag, Berlin 1990, volume 431, pp. 18-41. [MR: 1075020] [Zbl: 0785.68092] [Google Scholar]
  29. 29. X. G. VIENNOT, G. EYROLLES, N. JANEY and D. ARQUÈS, Combinatorial analysis of ramified pattems and computer imagery of trees. In Proceedings of SIGGRAPH'89, Computer Graphics, 1989, volume 23, pp. 31-40. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.