Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 30, Number 5, 1996
Page(s) 457 - 482
DOI https://doi.org/10.1051/ita/1996300504571
Published online 01 February 2017
  1. 1. D. ALBERT, R. BALDINGER and J. RHODES, Undecidability of the identity problem for finite semigroups, Journal of Symbolic Logic, 1992, 57, pp. 179-192. [MR: 1150933] [Zbl: 0780.20035] [Google Scholar]
  2. 2. J. ALMEIDA, Semidirect products of pseudovarieties from the univers al algebraist's point of view, Journal of Pure and Applied Algebra, 1989, 60, pp. 113-128. [MR: 1020712] [Zbl: 0687.20053] [Google Scholar]
  3. 3. J. ALMEIDA, On iterated semidirect products of finite semilattices, Journal of Algebra, 1991, 142, pp. 239-254. [MR: 1125216] [Zbl: 0743.20056] [Google Scholar]
  4. 4. J. ALMEIDA, Semigrupos Finitos e Álgebra Universal (Institute of Mathematics and Statistics of the University of São Paulo, 1992; [Google Scholar]
  5. Finite Semigroups and Universal Algebra (World Scientifîc, Singapore, 1994. [MR: 1331143] [Zbl: 0844.20039] [Google Scholar]
  6. 5. J. ALMEIDA and P. WEIL, Free profinite semigroups over semidirect products, Izvestiya Vysshikh Učebnykh Zavedeniĭ Matematica, 1995, 1, pp. 3-31 [MR: 1391317] [Zbl: 0847.20055] [Google Scholar]
  7. 6. F. BLANCHET-SADRI, Some logical characterizations of the dot-depth hierarchy and applications, Ph. D. Thesis, McGill University, 1989. [Zbl: 0831.68066] [MR: 2685431] [Google Scholar]
  8. 7. F. BLANCHET-SADRI, Games, equations and the dot-depth hierarchy, Computers and Mathematics with Applications, 1989, 18, pp. 809-822. [MR: 1008808] [Zbl: 0682.03015] [Google Scholar]
  9. 8. F. BLANCHET-SADRI, On dot-depth two, RAIRO Informatique Théorique et Applications, 1990, 24, pp. 521-529. [EuDML: 92373] [MR: 1082913] [Zbl: 0718.68046] [Google Scholar]
  10. 9. F. BLANCHET-SADRI, Games, equations and dot-depth two monoids, Discrete Applied Mathematics, 1992, 39, pp.99-111. [MR: 1184681] [Zbl: 0791.20068] [Google Scholar]
  11. 10. F. BLANCHET-SADRI, The dot-depth of a generating class of aperiodic monoids is computable, International Journal of Foundations of Computer Science, 1992, 3, pp. 419-442. [MR: 1209555] [Zbl: 0776.68087] [Google Scholar]
  12. 11. BLANCHET-SADRI, Equations and dot-depth one, Semigroup Forum, 1993, 47, pp. 305-317. [EuDML: 135281] [MR: 1235764] [Zbl: 0814.20048] [Google Scholar]
  13. 12. F. BLANCHET-SADRI, Equations and monoid varieties of dot-depth one and two, Theoretïcal Computer Science, 1994, 123, pp. 239-258. [MR: 1256200] [Zbl: 0801.68105] [Google Scholar]
  14. 13. F. BLANCHET-SADRI, On a complete set of generators for dot-depth two, Discrete Applied Mathematics, 1994, 50, pp. 1-25. [MR: 1272549] [Zbl: 0793.68087] [Google Scholar]
  15. 14. F. BLANCHET-SADRI, Equations on the semidirect product of a finite semilattice by a J-trivial monoid of height k, RAIRO Informatique Théorique et Applications, 1995, 29, pp. 157-170. [EuDML: 92502] [MR: 1347591] [Zbl: 0833.68073] [Google Scholar]
  16. 15. F. BLANCHET-SADRI, Some logical characterizations of the dot-depth hierarchy and applications, Journal of Computer and System Sciences, 1995, 51, pp. 324-337. [MR: 1356511] [Zbl: 0831.68066] [Google Scholar]
  17. 16. F. BLANCHET-SADRI, Inclusion relations between some congraences related to the dot-depth hierarchy, Discrete Applied Mathematics, 1996, 68, pp. 33-71. [MR: 1393309] [Zbl: 0854.68051] [Google Scholar]
  18. 17. F. BLANCHET-SADRI and X. H. ZHANG, Equations on the semidirect product of a finite semilattice by a finite commutative monoid, Semigroup Forum, 1994, 49, pp. 67-81. [EuDML: 135335] [MR: 1272864] [Zbl: 0816.20052] [Google Scholar]
  19. 18. J. A. BRZOZOWSKI and F. E. FICH, Languages of R-trivial monoids, Journal of Computer and System Sciences, 1980, 20, pp. 32-49. [MR: 566640] [Zbl: 0446.68066] [Google Scholar]
  20. 19. J. A. BRZOZOWSKI and R. KNAST, The dot-depth hierarchy of star-f ree languages is infinite, Journal of Computer and System Sciences, 1978, 16, pp. 37-55. [MR: 471451] [Zbl: 0368.68074] [Google Scholar]
  21. 20. S. BURRIS and H. P. SANKAPPANAVAR, A Course in Universal Algebra, Springer-Verlag, New York, 1981. [MR: 648287] [Zbl: 0478.08001] [Google Scholar]
  22. 21. R. S. COHEN and J. A. BRZOZOWSKI, Dot-depth of star-free events, Journal of Computer and System Sciences, 1971, 5, pp. 1-15. [MR: 309676] [Zbl: 0217.29602] [Google Scholar]
  23. 22. A. EHRENFEUCHT, An application of games to the completeness problems for formalized theories, Fundamenta Mathematicae, 1961, 49, pp. 129-141. [EuDML: 213582] [MR: 126370] [Zbl: 0096.24303] [Google Scholar]
  24. 23. S. EILENBERG, Automata, Languages, and Machines, Vol. A, Academie Press, New York, 1974; Vol. B, Academic Press, New York, 1976. [MR: 530382] [Zbl: 0359.94067] [Google Scholar]
  25. 24. S. EILENBERG and M. P. SCHÜTZENBERGER, On pseudovarieties, Advances in Mathematics, 1976, 79, pp. 413-418. [MR: 401604] [Zbl: 0351.20035] [Google Scholar]
  26. 25. C. IRASTORZA, Base non finie de variétés, in STACS'85, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1985, 182, pp. 180-186. [MR: 786881] [Zbl: 0572.20041] [Google Scholar]
  27. 26. D. PERRIN and J. E PIN, First order logic andstar-free sets, Journal of Computer and System Sciences, 1986, 32, pp. 393-406. [MR: 858236] [Zbl: 0618.03015] [Google Scholar]
  28. 27. J. E. PIN, Variétés de Langages Formels, Masson, Paris, 1984; Varieties of Formal Languages, North Oxford Academic, London, 1986 and Plenum, NewYork, 1986. [MR: 752695] [Zbl: 0636.68093] [Google Scholar]
  29. 28. J. E. PIN, Hiérarchies de concaténation, RAIRO Informatique Théorique et Applications, 1984, 18, pp.23-46. [EuDML: 92197] [MR: 750449] [Zbl: 0559.68062] [Google Scholar]
  30. 29. J. E. PIN, On semidirect products of two finite semilattices, Semigroup Forum, 1984, 28, pp.73-81. [EuDML: 134640] [MR: 729653] [Zbl: 0527.20046] [Google Scholar]
  31. 30. J. REITERMAN, The Birkhoff theorem for varieties of finite algebras, Algebra Universalis, 1982, 14, pp. 1-10. [MR: 634411] [Zbl: 0484.08007] [Google Scholar]
  32. 31. J. RHODES and B. TILSON, The kernel of monoid morphisms, Journal of Pure and Applied Algebra, 1989, 62, pp. 227-268. [MR: 1026876] [Zbl: 0698.20056] [Google Scholar]
  33. 32. I. SIMON, Hierarchies of events of dot-depth one, Ph. D. Thesis, University of Waterloo, 1972. [MR: 2623305] [Google Scholar]
  34. 33. I. SIMON, Piecewise testable events in Proc. 2nd GI Conf., Lecture Notes in Computer Science, 1975, 33, Springer-Verlag, Berlin, pp. 214-222. [MR: 427498] [Zbl: 0316.68034] [Google Scholar]
  35. 34. P. STIFFLER, Extension of the fundamental theorem of finite semigroups, Advances in Mathematics, 1973, 77, pp. 159-209. [Google Scholar]
  36. 35. H. STRAUBING, Finite semigroup varieties of the form V * D, Journal of Pure and Applied Algebra, 1985, 36, pp. 53-94. [MR: 782639] [Zbl: 0561.20042] [Google Scholar]
  37. 36. H. STRAUBING and P. WEIL, On a conjecture concerning dot-depth two languages, Theoretical Computer Science, 1992, 104, pp. 161-183. [MR: 1186177] [Zbl: 0762.68037] [Google Scholar]
  38. 37. W. THOMAS, Classifying regular events in symbolic logic, Journal of Computer and System Sciences, 1982, 25, pp. 360-376. [MR: 684265] [Zbl: 0503.68055] [Google Scholar]
  39. 38. W. THOMAS, An application of the Ehrenfeucht-Fraïssé game in formal language theory, Mémoires de la Société Mathématique de France, 1984, 16, pp. 11-21. [EuDML: 94847] [MR: 792490] [Zbl: 0558.68064] [Google Scholar]
  40. 39. B. TILSON, Categories as algebra: an essential ingredient in the theory of semigroups, Journal of Pure andApplied Algebra, 1987, 48, pp. 83-198. [MR: 915990] [Zbl: 0627.20031] [Google Scholar]
  41. 40. P. WEIL, Closure of varieties of languages under products with counter, Journal of Computer and System Sciences, 1992, 45, pp. 316-339. [MR: 1193376] [Zbl: 0766.20023] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.