Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 30, Number 5, 1996
Page(s) 415 - 429
DOI https://doi.org/10.1051/ita/1996300504151
Published online 01 February 2017
  1. 1. H. ABDULRAB, Solving Word Equations, RAIRO Theo. Informatics and Appl., 1990, 24, pp. 109-130. [EuDML: 92352] [MR: 1073531] [Zbl: 0701.68053] [Google Scholar]
  2. 2. A. C. CARON, Linear Bounded Automata and Rewrite Systems: Influence of Initial Configurations on Decision Properties. Proceedings of TAPSOFT 91, April 8-12, 1991, Brighton, England, LNCS, 1991, 493, pp. 74-89. [MR: 1107773] [Zbl: 0967.68523] [Google Scholar]
  3. 3. M. DAUCHET, Termination of Rewriting is Undecidable in the One-rule Case. Proc. 13th Symposium MFCS, August 29-Sept. 2, 1988, Carlsbad, Czech., LNCS, 1988, 324, pp. 262-270. [MR: 1023430] [Zbl: 0649.68026] [Google Scholar]
  4. 4. N. DERSHOWITZ, Termination of Rewriting. J. Symbolic Computation, 1987, 3, pp. 69-116, and 1987, 4, pp. 409-410. [Zbl: 0637.68035] [MR: 925736] [Google Scholar]
  5. 5. C. KIRCHNER (Ed.), Rewriting Techniques and Applications, Proceedings of RTA-93, June 16-18, 1993, Montréal, Canada. LNCS, 1993, 690. [MR: 1251780] [Zbl: 0825.00068] [Google Scholar]
  6. 6. W. KURTH, Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel, Dissertation, Technische Universität Clausthal, 1990. [Zbl: 0719.03019] [Google Scholar]
  7. 7. G. LALLEMENT, On Monoids Presented by a Single Relation. J. Algebra, 1974, 32, pp. 370-388. [MR: 354908] [Zbl: 0307.20034] [Google Scholar]
  8. 8. R. MCNAUGHTON, The Uniform Halting Problem for One-Rule Semi-Thue Systems, Rensselaer Polytechnic Institute, Report 94-18, August 1994. [Google Scholar]
  9. 9. R. MCNAUGHTON, Well Behaved Derivations in One-Rule Semi-Thue Systems, Rensselaer Polytechnic Institute, Report 95-15, November 1995. [Google Scholar]
  10. 10. Y. METIVIER, Calcul de Longueurs de Chaînes de Réécriture dans le Monoïde Libre, Theoretical Computer Science, 1985, 35, pp. 71-87. [MR: 785908] [Zbl: 0562.03019] [Google Scholar]
  11. 11. P. NARENDRAN, C. Ó'DUNLAING and H. ROLLETSCHEK, Complexity of Certain Decision Problems About Congruential Languages, J. Computer Syst. Sci., 1985, 30, pp. 343-358. [MR: 805653] [Zbl: 0607.68055] [Google Scholar]
  12. 12. F. OTTO, The Undecidability of Self-Embedding for Finite Semi-Thue and Thue Systems, Theoretical Computer Science, 1986, 47, pp. 225-232. [MR: 881214] [Zbl: 0624.03032] [Google Scholar]
  13. 13. H. ZANTEMA and A. GESER, A complete characterization of termination of 0p 1q → 1r 0s. Proceedings of RTA-95, April 5-7, 1995, Kaiserslautern, Germany, LNCS, 1995, 914, pp. 41-55. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.