Free Access
RAIRO-Theor. Inf. Appl.
Volume 27, Number 3, 1993
Page(s) 221 - 260
Published online 01 February 2017
  1. [ABL86] R. AMADIO, K. B. BRUCE and G. LONGO, The finitary projection model for second order lambda calculus and higher order domain equations, Logic in Computer Science, 1986, pp. 122-135, IEEE. [Google Scholar]
  2. [AC90] R. M. AMADIO and L. CARDELLI, Subtyping recursive types, Technical Report 62, Digital Systems Research Centre, 1990. [Google Scholar]
  3. [Bar9 + ] H. P. BARENDREGT, Typed lambda calculi. In D. M. GABBAI, S. ABRAMSKY and T. S. E. MAIBAUM, Eds., Handbook of Logic in Computer Science, volume 1.Oxford University Press, to appear. [MR: 1381697] [Google Scholar]
  4. [BH88] R. Bos and C. HEMERIK, An introduction to the category-theoretic solution of recursive domain equations, Technical Report 15, Eindhoven University of Technology, 1988. [Google Scholar]
  5. [BL90] K. B. BRUCE and G. LONGO, A modest model of records, iheritance and bounded quantification, Information and Computation, 1990, 87, pp. 196-240. [MR: 1055952] [Zbl: 0711.68072] [Google Scholar]
  6. [BMM90] K. B. BRUCE, A. R. MEYER and J. C. MITCHELL, The semantics of second-order lambda calculus, Information and Computation, 1990, 85, pp. 76-134. [MR: 1042650] [Zbl: 0714.68052] [Google Scholar]
  7. [BCGS91] V. BREAZU-TANNEN, Th. COQUAND, C. A. GUNTER and A. SCEDROV Inheritance as explicit coercion. Information and Computation, 1991, 93, (1), pp. 172-221. [MR: 1115265] [Zbl: 0799.68129] [Google Scholar]
  8. [CC91] F. CARDONE and M. COPPO, Type inference with recursive types: Syntax and semantics, Information and Computation, 1991, 92, (1), pp.48-80. [MR: 1106098] [Zbl: 0722.68076] [Google Scholar]
  9. [CG90] P.-L. CURIEN and G. GHELLI, Coherence of subsumption. In A. ARNOLD, Ed., Colloquium on Trees in Algebras and Programming, Vol. 431 of LNCS, 1990, pp. 132-146, Springer. [MR: 1075027] [Zbl: 0759.03009] [Google Scholar]
  10. [CHC90] W. R. COOK, W. L. HILL and P. S. CANNING, Inheritance is not subtyping, Principles of Programming Languages, 1990, pp. 125-135, ACM. [Google Scholar]
  11. [CL90] L. CARDELLI and G. LONGO, A semantic basis for Quest, Technical Report 55, Digital Systems Research Center, Palo Alto, California 94301, 1990. [Zbl: 0941.68528] [MR: 1140339] [Google Scholar]
  12. [CM89] L. CARDELLI and J. C. MITCHELL, Operations on records, in M. MAIN et al., Ed., Fifth International Conference on Mathematical Foundations of Programming Semantics, Vol. 442 of LNCS, 1989, pp. 22-53. [Google Scholar]
  13. [Cou83] B. COURCELLE, Fundamental properties of infinite trees, Theoretical Computer Science, 1983, 25, pp.95-169. [MR: 693076] [Zbl: 0521.68013] [Google Scholar]
  14. [CW85] L. CARDELLI and P. WEGNER, On understanding types, data abstraction and polymorphism, Computing Surveys, 1985, 17, (4), pp.471-522. [Google Scholar]
  15. [Gir72] J.-Y. GIRARD, Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur, Ph. D. thesis, Université Paris-VII, 1972. [Google Scholar]
  16. [Gir86] J.-Y. GIRARD, The System F of variable types, fifteen years later. Theoretical Computer Science, 1986, 45, pp. 159-192. [MR: 867281] [Zbl: 0623.03013] [Google Scholar]
  17. [HS73] H. HERRLICH and G. E. STRECKER. Category Theory. Allyn and Bacon, 1973. [MR: 349791] [Zbl: 0265.18001] [Google Scholar]
  18. [LS81] D. J. LEHMANN and M. B. SMYTH, Algebraic specification of data types: a synthetic approach, Math. Syst. Theory, 1981, 11, pp. 97-139. [MR: 616960] [Zbl: 0457.68035] [Google Scholar]
  19. [McC79] N. MCCRACKEN, An Investigation of a Programming Language with a Polymorphic Type Structure, Ph. D. thesis, Syracuse University New York, 1979. [Google Scholar]
  20. [Mit84] J. C. MITCHELL, Semantic models for second-order lambda calculus, Foundations of Computer Science, 1984, pp. 289-299, IEEE. [Google Scholar]
  21. [MP88] J. C. MITCHELL and G. D. PLOTKIN, Abstract types have existential type, ACM Trans. on Prog. Lang. and Syst., 1988, 10, (3), pp. 470-502. [Google Scholar]
  22. [Pol91] E. POLL, Cpo-models for second order lambda calculus with recursive types and subtyping, Computing Science Note (91/07), Eindhoven University of Technology, 1991. [Google Scholar]
  23. [Rey74] J. C. REYNOLDS, Towards a theory of type structure, Programming Symposium: Colloque sur la Programmation, LNCS, 1974, pp. 408-425, Springer. [MR: 458988] [Zbl: 0309.68016] [Google Scholar]
  24. [SP82] J. C. SMYTH and G. D. PLOTKIN, The category-theoretic solution of recursive domain equations, S.I.A.M. Journal of Computing, 1982, 11, pp. 761-783. [MR: 677666] [Zbl: 0493.68022] [Google Scholar]
  25. [tEH89a] H. TEN EIKELDER and C. HEMERIK, The construction of a cpo model for second order lambda calculus with recursion, Procs, CNS'89 Computing Science in the Netherlands, 1989, pp. 131-148. [Google Scholar]
  26. [tEH89b] H. TEN EIKELDER and C. HEMERIK, Some category-theoretical properties related to a model for a polymorphic lambda calculus, Computing Science Note (89/03), Eindhoven University of Technology, 1989. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.