Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 27, Number 2, 1993
Page(s) 149 - 161
DOI https://doi.org/10.1051/ita/1993270201491
Published online 01 February 2017
  1. 1. I. N. BERNSTEIN, Modules over a ring of differential operators. A study of the fundamental solutions of equations with constant coefficients, Functional Anal. Appl., 5, (2), 1971, p. 1-16 (in Russian), p. 89-101 (English translation). [MR: 290097] [Zbl: 0233.47031] [Google Scholar]
  2. 2. I. N. BERNSTEIN, The analytic continuation of generalized functions with respect to a parameter, Functional Anal. Appl., 6, (4), 1972, p. 26-40 (in Russian), p. 273-285 (English translation). [MR: 320735] [Zbl: 0282.46038] [Google Scholar]
  3. 3. A. BERTONI, M. GOLDWURM and P. MASSAZZA, Counting problems and algebraic formal power series in noncommuting variables, Inform. Process. Lett., 34, 1990, p. 117-121. [MR: 1059975] [Zbl: 0695.68053] [Google Scholar]
  4. 4. J. BERSTEL and C. REUTENAUER, Rational series and their languages, Springer-Verlag, Berlin Heidelberg, 1988. [MR: 971022] [Zbl: 0668.68005] [Google Scholar]
  5. 5. N. CHOMSKY and M. P. SCHUETZENBERGER, The algebraic theory of context-free languages, Computer Programming and Formal Systems, North-Holland, Amsterdam, 1963, p. 118-161. [MR: 152391] [Zbl: 0148.00804] [Google Scholar]
  6. 6. M. CLAUSEN and A. FORTENBACHER, Efficient solution of linear diophantine equations, J. Symbolic Comput., 8, 1989, p. 201-216. [MR: 1014196] [Zbl: 0674.10011] [Google Scholar]
  7. 7. S. EILENBERG and M. P. SCHUETZENBERGER, Rational sets in commutative monoids, J. Algebra, 13, (2), 1969, p. 173-191. [MR: 246985] [Zbl: 0206.02703] [Google Scholar]
  8. 8. P. FLAJOLET, Analytic models and ambiguity of context-free languages, Theoret. Compul. Sci., 49, 1987, p. 283-309. [MR: 909335] [Zbl: 0612.68069] [Google Scholar]
  9. 9. M. GOLDWURM and P. MASSAZZA, On computing the coefficients of holonomic and algebraic multivariate formal series, Internal Report, Dip. di Scienze dell'Informazione, Univ. degli Studi di Milano, 1992. [Google Scholar]
  10. 10. G. HUET, An algorithm to generate the basis of solutions to homogeneous linear diophantine equations, Inform. Process. Lett., 7, 1978, p. 144-147. [Zbl: 0377.10011] [Google Scholar]
  11. 11. J. L. LAMBERT, Une borne pour les générateurs des solutions entières positives d'une équation diophantienne linéaire, C.R. Acad. Sci. Paris, t. 305, série I, 1987, p. 39-40. [Zbl: 0615.10022] [Google Scholar]
  12. 12. L. LIPSHITZ, D-Finite Power Series, J. Algebra, 122, 1989, p. 353-373. [Zbl: 0695.12018] [Google Scholar]
  13. 13. P. MASSAZZA, Problemi di conteggio e funzioni generatrici olonomiche, Tesi di Dottorato, Dip. di Scienze dell'Informazione, Univ. degli Studi di Milano, 1990. [Google Scholar]
  14. 14. P. MASSAZZA and N. SABADINI, Some applications and techniques for generating functions, Proc. CAAP, LNCS, 351, Springer-Verlag, 1989, p. 321-336. [MR: 1035039] [Google Scholar]
  15. 15. P. MASSAZZA and N. SABADINI, Holonomic generating functions and context free languages, Proc. of the first Italian conference on algorithms and complexity, World Scientific, Singapore, 1990, p. 148-158. Extended version to appear in: International Journal of Foundations of Computer Science. [MR: 1083368] [Zbl: 0754.68064] [Google Scholar]
  16. 16. A. SALOMAA and M. SOITTOLA, Automata-theoretic aspects of formal power series, Springer-Verlag, New York, 1978. [MR: 483721] [Zbl: 0377.68039] [Google Scholar]
  17. 17. R. P. STANLEY, Differentiably finite power series, European J. Combin., 1, 1980, p. 175-188. [MR: 587530] [Zbl: 0445.05012] [Google Scholar]
  18. 18. J. WIMP and D. ZEILBERGER, Resurrecting the Asymptotics of Linear Recurrences, J. Math. Anal. Appl., 111, 1985, p. 162-176. [MR: 808671] [Zbl: 0579.05007] [Google Scholar]
  19. 19. D. ZEILBERGER, A holonomic systems approach to special functions identifies, J. Comput. Appl. Math., 32, 1990, p. 321-368. [MR: 1090884] [Zbl: 0738.33001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.