Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 27, Number 2, 1993
Page(s) 149 - 161
DOI https://doi.org/10.1051/ita/1993270201491
Published online 01 February 2017
  1. 1. I. N. BERNSTEIN, Modules over a ring of differential operators. A study of the fundamental solutions of equations with constant coefficients, Functional Anal. Appl., 5, (2), 1971, p. 1-16 (in Russian), p. 89-101 (English translation). [MR: 290097] [Zbl: 0233.47031]
  2. 2. I. N. BERNSTEIN, The analytic continuation of generalized functions with respect to a parameter, Functional Anal. Appl., 6, (4), 1972, p. 26-40 (in Russian), p. 273-285 (English translation). [MR: 320735] [Zbl: 0282.46038]
  3. 3. A. BERTONI, M. GOLDWURM and P. MASSAZZA, Counting problems and algebraic formal power series in noncommuting variables, Inform. Process. Lett., 34, 1990, p. 117-121. [MR: 1059975] [Zbl: 0695.68053]
  4. 4. J. BERSTEL and C. REUTENAUER, Rational series and their languages, Springer-Verlag, Berlin Heidelberg, 1988. [MR: 971022] [Zbl: 0668.68005]
  5. 5. N. CHOMSKY and M. P. SCHUETZENBERGER, The algebraic theory of context-free languages, Computer Programming and Formal Systems, North-Holland, Amsterdam, 1963, p. 118-161. [MR: 152391] [Zbl: 0148.00804]
  6. 6. M. CLAUSEN and A. FORTENBACHER, Efficient solution of linear diophantine equations, J. Symbolic Comput., 8, 1989, p. 201-216. [MR: 1014196] [Zbl: 0674.10011]
  7. 7. S. EILENBERG and M. P. SCHUETZENBERGER, Rational sets in commutative monoids, J. Algebra, 13, (2), 1969, p. 173-191. [MR: 246985] [Zbl: 0206.02703]
  8. 8. P. FLAJOLET, Analytic models and ambiguity of context-free languages, Theoret. Compul. Sci., 49, 1987, p. 283-309. [MR: 909335] [Zbl: 0612.68069]
  9. 9. M. GOLDWURM and P. MASSAZZA, On computing the coefficients of holonomic and algebraic multivariate formal series, Internal Report, Dip. di Scienze dell'Informazione, Univ. degli Studi di Milano, 1992.
  10. 10. G. HUET, An algorithm to generate the basis of solutions to homogeneous linear diophantine equations, Inform. Process. Lett., 7, 1978, p. 144-147. [Zbl: 0377.10011]
  11. 11. J. L. LAMBERT, Une borne pour les générateurs des solutions entières positives d'une équation diophantienne linéaire, C.R. Acad. Sci. Paris, t. 305, série I, 1987, p. 39-40. [Zbl: 0615.10022]
  12. 12. L. LIPSHITZ, D-Finite Power Series, J. Algebra, 122, 1989, p. 353-373. [Zbl: 0695.12018]
  13. 13. P. MASSAZZA, Problemi di conteggio e funzioni generatrici olonomiche, Tesi di Dottorato, Dip. di Scienze dell'Informazione, Univ. degli Studi di Milano, 1990.
  14. 14. P. MASSAZZA and N. SABADINI, Some applications and techniques for generating functions, Proc. CAAP, LNCS, 351, Springer-Verlag, 1989, p. 321-336. [MR: 1035039]
  15. 15. P. MASSAZZA and N. SABADINI, Holonomic generating functions and context free languages, Proc. of the first Italian conference on algorithms and complexity, World Scientific, Singapore, 1990, p. 148-158. Extended version to appear in: International Journal of Foundations of Computer Science. [MR: 1083368] [Zbl: 0754.68064]
  16. 16. A. SALOMAA and M. SOITTOLA, Automata-theoretic aspects of formal power series, Springer-Verlag, New York, 1978. [MR: 483721] [Zbl: 0377.68039]
  17. 17. R. P. STANLEY, Differentiably finite power series, European J. Combin., 1, 1980, p. 175-188. [MR: 587530] [Zbl: 0445.05012]
  18. 18. J. WIMP and D. ZEILBERGER, Resurrecting the Asymptotics of Linear Recurrences, J. Math. Anal. Appl., 111, 1985, p. 162-176. [MR: 808671] [Zbl: 0579.05007]
  19. 19. D. ZEILBERGER, A holonomic systems approach to special functions identifies, J. Comput. Appl. Math., 32, 1990, p. 321-368. [MR: 1090884] [Zbl: 0738.33001]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.