Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 27, Number 2, 1993
Page(s) 135 - 148
DOI https://doi.org/10.1051/ita/1993270201351
Published online 01 February 2017
  1. 1. C. ALVAREZ, B. JENNER, A very hard log space counting problem, Proceedings 5th Conference on Structure in Complexity Theory, 1990, pp. 154-168. [MR: 1097666] [Google Scholar]
  2. 2. A. BERTONI, D. BRUSCHI and M. GOLDWURM, Ranking and formal power series, Theoretical Computer Science, 79, 1991, pp. 25-35. [MR: 1102950] [Zbl: 0721.68023] [Google Scholar]
  3. 3. A. BERTONI, M. GOLDWURM and P. MASSAZZA, Counting problems and formal series in noncommuting variables, Inform. Process. Lett., 34, 1990, pp. 117-121. [MR: 1059975] [Zbl: 0695.68053] [Google Scholar]
  4. 4. A. BERTONI, M. GOLDWURM and N. SABADINI, The complexity of Computing the number of strings of given length in context-free languages, Theoretical Computer Science, 86, 1991, pp. 325-342. [MR: 1122793] [Zbl: 0744.68066] [Google Scholar]
  5. 5. A. CHANDRA, D. KOZEN and L. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 28, 1981, p. 114-133. [MR: 603186] [Zbl: 0473.68043] [Google Scholar]
  6. 6. J. H. CHANG, O. H. IBARRA, M. A. PALIS, and B. RAVIKUMAR, On pebble automata, Theoretical Computer Science, 44, 1986, pp. 111-121. [MR: 858693] [Zbl: 0612.68045] [Google Scholar]
  7. 7. S. COOK, A taxonomy of problems with fast parallel algorithms, Information and Control, 64, 1985, pp. 2-22. [MR: 837088] [Zbl: 0575.68045] [Google Scholar]
  8. 8. A. V. GOLDBERG and M. SIPSER, Compression and ranking, Proceedings 17th ACM Symposium on Theory of Computing, 1985, pp. 59-68. [Google Scholar]
  9. 9. D. T. HUYNH, The complexity of ranking simple languages, Math. Systems Theory, 23, 1990, pp. 1-20. [MR: 1028230] [Zbl: 0692.68059] [Google Scholar]
  10. 10. D. T. HUYNH, Effective entropies and data compression, Information and Computation, 90, 1991, pp. 67-85. [MR: 1088806] [Zbl: 0715.68047] [Google Scholar]
  11. 11. W. KUICH, Finite automata and ambiguity, Report 253, Institut für Informationsverarbeitung, Technische Universität Graz, June 1988. [Google Scholar]
  12. 12. C. C. MACDUFFEE, The theory of Matrices, Chelsea Pub. Comp., New York 1946. [Zbl: 0007.19507] [Google Scholar]
  13. 13. M. SIPSER, Borel sets and circuits complexity, Proceedings 15th ACM Symposium on Theory of Computing, 1983, pp. 61-69. [Google Scholar]
  14. 14. L. STOCKMEYER and U. VISHKIN, Simulation of random access machines by circuits, SIAM J. Comput, 13, 1984, pp. 409-422. [MR: 739997] [Zbl: 0533.68048] [Google Scholar]
  15. 15. L. G. VALIANT, The complexity of enumeration and reliability problems, SIAM J. Comput, 8, 1979, pp. 410-420. [MR: 539258] [Zbl: 0419.68082] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.