Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 21, Number 2, 1987
Page(s) 181 - 197
DOI https://doi.org/10.1051/ita/1987210201811
Published online 01 February 2017
  1. 1. A. V. AHO, M. R. GAREY et J. D. ULLMAN, The Transitive Reduction of a Directed Graph, S.I.A.M. J. Comput., vol. 1, n° 2, juin, 1972, p. 131-137. [MR: 306032] [Zbl: 0247.05128] [Google Scholar]
  2. 2. M. BARBUT et B. MONJARDET, Ordre et Classification, Algèbre et Combinatoire, 2 tomes, Hachette, Paris, 1970. [Zbl: 0267.06001] [Google Scholar]
  3. 3. J. P. BORDAT, Parcours dans les graphes : un outil pour l'algorithmique des ensembles ordonnés, Discr. Appl. Math., vol. 12, 1985, 215-231. [MR: 813971] [Zbl: 0589.06004] [Google Scholar]
  4. 4. J. P. BORDAT, Propriétés algorithmiques des treillis distributifs, Rapp. Rech., C.R.I.M., Montpellier (en préparation). [Google Scholar]
  5. 5. J. P. BORDAT et O. COGIS, Parcours dans les graphes sans circuit, Rapp. rech., n° 11, C.R.I.M., Montpellier, mai 1985. [Google Scholar]
  6. 6. G. CHATY et M. CHEIN, Invariants liés aux chemins dans les graphes sans circuit, Coll. Int. Th. Comb. Rome, 3-15 sept. 1973, p. 287-308. [MR: 472588] [Zbl: 0349.05112] [Google Scholar]
  7. 7. M. J. FISCHER et A. R. MEYER, Boolean Matrix Multiplication and Transitive Closure, Conference Record, I.E.E.E. 12th Annual Symposium on Switching and Automata Theory, 1971, p. 129-131. [Google Scholar]
  8. 8. M. L. FREDMAN, New Bounds on the Complexity of the Shortest Path Problem, S.I.A.M. J. Comput., vol. 5, n° 1, mars 1976, p. 83-88. [MR: 404050] [Zbl: 0326.68027] [Google Scholar]
  9. 9A. GORALCIKOVA et V. KOUBEK, A Reduct-and-Closure Algorithm for Graphs, Proceedings of M.F.C.S. 79, Springer-Verlag, Berlin, Heidelberg, New York, 1979, p. 301-307. [MR: 570989] [Zbl: 0408.68038] [Google Scholar]
  10. 10. M. HABIB, M. HAMROUN et R. JEGOU, Linear equivalences for transitivity in Graphs, Rapp. Rech. n° 83-10, E.N.S.M. Saint-Etienne, Discrete Applied Mathematics (Soumis). [Google Scholar]
  11. 11. M. HABIB et R. JEGOU, N-free Posets as Generalizations of Series-Parallel Posets, Discr. Appl. Math., vol. 12, 1985 p. 279-291. [MR: 813975] [Zbl: 0635.06002] [Google Scholar]
  12. 12. D. E. KNUTH, Big Omicron and Big Omega and Big Theta, Sigact News, avril-juin 1976, p. 18-24. [Google Scholar]
  13. 13.K. MELHORN, Data Structures andAlgorithms 2 : Graph Algorithms and NP completeness, Springer-Verlag, 1984. [Zbl: 0556.68002] [Google Scholar]
  14. 14. B. MONJARDET, Caractérisations métriques des ensembles ordonnés semi-modulaires, Math. Sci. Hum., vol. 56, 1976, p. 77-87. [EuDML: 94189] [MR: 444543] [Zbl: 0367.06010] [Google Scholar]
  15. 15. I. MUNRO, Efficient Determination of the Transitive Closure of a Directed Graph, Dept. of Computer Science, University of Toronto, U.S.A., Inform. Proc. Lett., vol. 1, 1971, p. 56-58. [Zbl: 0221.68030] [Google Scholar]
  16. 16. F. ROMANI, Shortest Path Problem is not harder than Matrix Multiplication, Inform. Proc. Lett., vol. 11, n° 3, 1981, p. 134-136. [MR: 593406] [Zbl: 0454.68069] [Google Scholar]
  17. 17. J. VALDES, R. E. TARJAN et E. L. LAWLER, The Recognition of Series-Parallel Digraphs, S.I.A.M. J. Comput, vol. 11, n° 2, 1982, p. 298-313. [MR: 652904] [Zbl: 0478.68065] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.