Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 21, Number 2, 1987
Page(s) 199 - 215
DOI https://doi.org/10.1051/ita/1987210201991
Published online 01 February 2017
  1. 1. J. L. BENTLEY and H. A. MAURER, Efficient Worst-Case Data Structures for Range Searching, Acta Informatica, Vol. 13, 1980, pp. 155-168. [MR: 564462] [Zbl: 0423.68029]
  2. 2. D. COPPERSMITH, D. T. LEE and C. K. WONG, An Elementary Proof of Nonexistence of Isometries Between lkp and lkq, I.B.M. Journal of Research and Development, Vol. 23, 1979, pp. 696-699. [MR: 548491] [Zbl: 0424.68026]
  3. 3. P. FRANKL, Privite communication, May 23, 1985.
  4. 4. H. N. GABOW, J. L. BENTLEY and R. E. TARJAN, Scaling and Related Techniques for Geometry Problems, in Proc. 16th Annual A.C.M. Symposium on Theory of Computing, Washington D.C., 1984, pp. 135-143.
  5. 5. R. K. GUY, and S. ZNÁM, A Problem of Zarankiewicz, in Recent Progress in Combinatorics, W. T. TUTTE Ed., Academic Press, 1969, pp. 237-243. [MR: 256902] [Zbl: 0196.02203]
  6. 6. C. HYLTÉN-CAVALLIUS, On a Combinatorical Problem, Colloquium Mathematicum, Vol. 6, 1958, pp. 59-65. [EuDML: 210386] [MR: 103158] [Zbl: 0086.01202]
  7. 7. J. KATAJAINEN and M. KOPPINEN, A note on Systems of Finite Sets Satisfying an Intersection Condition, Report B36, Department of Computer Science, University of Turku, Finland, 1985.
  8. 8. J. KATAJAINEN and O. NEVALAINEN, Computing Relative Neighbourhood Graphs in the Plane, Pattern Recognition, Vol. 19, 1986, pp. 221-228. [Zbl: 0602.68089]
  9. 9. J. KATAJAINEN, O. NEVALAINEN and J. TEUHOLA, A Linear Expected-Time Algorithm for Computing Planar Relative Neighbourhood Graphs, in Information Processing Letters (to appear). [MR: 896149] [Zbl: 0653.68034]
  10. 10. M. KOPPINEN, Privite communication, December 18, 1985.
  11. 11. J. O'ROURKE, Computing the Relative Neighborhood Graph in the L1 and L∞ Metrics, Pattern Recognition, Vol. 15, 1982, pp. 189-192. [MR: 662775] [Zbl: 0486.68063]
  12. 12. K. J. SUPOWIT, The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees, Journal of the A.C.M., Vol. 30, 1983, pp. 428-448. [MR: 709827] [Zbl: 0625.68047]
  13. 13. G. T. TOUSSAINT, The Relative Neighbourhood Graph of a Finite Planar Set, Pattern Recognition, Vol. 12, 1980, pp. 261-268. [MR: 591314] [Zbl: 0437.05050]
  14. 14. G. T. TOUSSAINT, Comment on "Algorithms for Computing Relative Neighbourhood Graph", Electronics Letters, Vol. 16, 1980, pp. 860-861. [MR: 592510]
  15. 15. G. T. TOUSSAINT and R. MENARD, Fast Algorithms for Computing the Planar Relative Neighborhood Graph, in Proc. 5th Symposium on Operations Research, Köln, F.R. Germany, 1980, pp. 425-428. [Zbl: 0467.90028]
  16. 16. R. B. URQUHART, Algorithms for Computation of Relative Neighbourhood Graph, Electronics Letters, Vol. 16, 1980, pp. 556-557. [MR: 578786]
  17. 17. D. WOOD, An Isothetic View of Computational Geometry, Report CS-84-01, Computer Science Department, University of Waterloo, Canada, 1984. [Zbl: 0614.68078] [MR: 834395]
  18. 18. A. C. YAO, On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems, S.I.A.M. Journal of Computing, Vol. 11, 1982, pp. 721-736. [MR: 677663] [Zbl: 0492.68050]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.