Free Access
RAIRO-Theor. Inf. Appl.
Volume 21, Number 2, 1987
Page(s) 199 - 215
Published online 01 February 2017
  1. 1. J. L. BENTLEY and H. A. MAURER, Efficient Worst-Case Data Structures for Range Searching, Acta Informatica, Vol. 13, 1980, pp. 155-168. [MR: 564462] [Zbl: 0423.68029] [Google Scholar]
  2. 2. D. COPPERSMITH, D. T. LEE and C. K. WONG, An Elementary Proof of Nonexistence of Isometries Between lkp and lkq, I.B.M. Journal of Research and Development, Vol. 23, 1979, pp. 696-699. [MR: 548491] [Zbl: 0424.68026] [Google Scholar]
  3. 3. P. FRANKL, Privite communication, May 23, 1985. [Google Scholar]
  4. 4. H. N. GABOW, J. L. BENTLEY and R. E. TARJAN, Scaling and Related Techniques for Geometry Problems, in Proc. 16th Annual A.C.M. Symposium on Theory of Computing, Washington D.C., 1984, pp. 135-143. [Google Scholar]
  5. 5. R. K. GUY, and S. ZNÁM, A Problem of Zarankiewicz, in Recent Progress in Combinatorics, W. T. TUTTE Ed., Academic Press, 1969, pp. 237-243. [MR: 256902] [Zbl: 0196.02203] [Google Scholar]
  6. 6. C. HYLTÉN-CAVALLIUS, On a Combinatorical Problem, Colloquium Mathematicum, Vol. 6, 1958, pp. 59-65. [EuDML: 210386] [MR: 103158] [Zbl: 0086.01202] [Google Scholar]
  7. 7. J. KATAJAINEN and M. KOPPINEN, A note on Systems of Finite Sets Satisfying an Intersection Condition, Report B36, Department of Computer Science, University of Turku, Finland, 1985. [Google Scholar]
  8. 8. J. KATAJAINEN and O. NEVALAINEN, Computing Relative Neighbourhood Graphs in the Plane, Pattern Recognition, Vol. 19, 1986, pp. 221-228. [Zbl: 0602.68089] [Google Scholar]
  9. 9. J. KATAJAINEN, O. NEVALAINEN and J. TEUHOLA, A Linear Expected-Time Algorithm for Computing Planar Relative Neighbourhood Graphs, in Information Processing Letters (to appear). [MR: 896149] [Zbl: 0653.68034] [Google Scholar]
  10. 10. M. KOPPINEN, Privite communication, December 18, 1985. [Google Scholar]
  11. 11. J. O'ROURKE, Computing the Relative Neighborhood Graph in the L1 and L∞ Metrics, Pattern Recognition, Vol. 15, 1982, pp. 189-192. [MR: 662775] [Zbl: 0486.68063] [Google Scholar]
  12. 12. K. J. SUPOWIT, The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees, Journal of the A.C.M., Vol. 30, 1983, pp. 428-448. [MR: 709827] [Zbl: 0625.68047] [Google Scholar]
  13. 13. G. T. TOUSSAINT, The Relative Neighbourhood Graph of a Finite Planar Set, Pattern Recognition, Vol. 12, 1980, pp. 261-268. [MR: 591314] [Zbl: 0437.05050] [Google Scholar]
  14. 14. G. T. TOUSSAINT, Comment on "Algorithms for Computing Relative Neighbourhood Graph", Electronics Letters, Vol. 16, 1980, pp. 860-861. [MR: 592510] [Google Scholar]
  15. 15. G. T. TOUSSAINT and R. MENARD, Fast Algorithms for Computing the Planar Relative Neighborhood Graph, in Proc. 5th Symposium on Operations Research, Köln, F.R. Germany, 1980, pp. 425-428. [Zbl: 0467.90028] [Google Scholar]
  16. 16. R. B. URQUHART, Algorithms for Computation of Relative Neighbourhood Graph, Electronics Letters, Vol. 16, 1980, pp. 556-557. [MR: 578786] [Google Scholar]
  17. 17. D. WOOD, An Isothetic View of Computational Geometry, Report CS-84-01, Computer Science Department, University of Waterloo, Canada, 1984. [Zbl: 0614.68078] [MR: 834395] [Google Scholar]
  18. 18. A. C. YAO, On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems, S.I.A.M. Journal of Computing, Vol. 11, 1982, pp. 721-736. [MR: 677663] [Zbl: 0492.68050] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.