Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 21, Number 2, 1987
Page(s) 175 - 180
DOI https://doi.org/10.1051/ita/1987210201751
Published online 01 February 2017
  1. 1. O. ABERTH, Computable Analysis, McGraw-Hill, New York, 1980. [Zbl: 0461.03015] [Google Scholar]
  2. 2. K. Ko and H. FRIEDMAN, Computational Complexity of Real Functions, Theoretical Computer Science, Vol. 20, 1982, pp. 323-352. [MR: 666209] [Zbl: 0498.03047] [Google Scholar]
  3. 3. K. KO, On the Definitions of Some Complexity Classes of Real Numbers, Math. Systems Theory, Vol. 16, 1983, pp. 95-109. [MR: 696140] [Zbl: 0529.03016] [Google Scholar]
  4. 4. A. MOSTOWSKI, On Computable Real Sequences, Fund. Math., Vol. 44, 1957, pp. 37-51. [EuDML: 213420] [MR: 91242] [Zbl: 0079.24702] [Google Scholar]
  5. 5. H. G. RICE, Recursive Real Numbers, Proc Amer. Math. Soc., Vol. 5, 1954, pp. 784-791. [MR: 63328] [Zbl: 0058.00602] [Google Scholar]
  6. 6. R. M. ROBINSON, Review of R. Peter's Book, Rekursive Funktionen, J. Symbolic Logic, Vol. 16, 1951, pp. 280-282. [Google Scholar]
  7. 7. E. SPECKER, Nicht-Konstruktiv beweisbare Sätze des Analysis, J. Symbolic Logic, Vol. 14, 1949, pp. 145-158. [MR: 31447] [Zbl: 0033.34102] [Google Scholar]
  8. 8. J. TORÁN, Computabilidad y complejidad computacional de algunos problemas del analisis real elemental, Tesina de la Universidad Complutense de Madrid. 1985. [Google Scholar]
  9. 9. A. M. TURING, On Computable Real Numbers with an Application to the Entscheidungs Problem, Proc. London Math. Soc., 1937, pp. 230-265. [Zbl: 0016.09701] [JFM: 62.1059.03] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.