Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 21, Number 2, 1987
Page(s) 147 - 173
DOI https://doi.org/10.1051/ita/1987210201471
Published online 01 February 2017
  1. [Au] J.-M. AUTEBERT, Relationships Between AFDLs and Cylinders, Techn. Rep. No. 78-53, L.I.T.P., Paris, 1978. [Google Scholar]
  2. [BN] L. BOASSON and M. NIVAT, Adherences of Languages, J. Comput. Syst. Sci., Vol. 20, No. 3, 1980, p. 285-309. [MR: 584863] [Zbl: 0471.68052] [Google Scholar]
  3. [Bü] J. R. BÜCHI, On a Decision Method in Restricted Second Order Arithmetic, in Proceedings 1960Int. Congr. for Logic, Stanford Univ. Press, Stanford, 1962, pp. 1-11. [MR: 183636] [Zbl: 0147.25103] [Google Scholar]
  4. [CG] R. S. COHEN and A. Y. GOLD, ω-Computations on Turing Machines, Theoret. Comput. Sci., Vol. 6, 1978, pp. 1-23. [MR: 465819] [Zbl: 0368.68057] [Google Scholar]
  5. [Da] M. DAVIS, Infinitary Games of Perfect Information, in Advances in Game Theory, Princeton Univ. Press, Princeton N. J., 1964, pp. 89-101. [MR: 170727] [Zbl: 0133.13104] [Google Scholar]
  6. [Ku] K. KURATOWSKJ,, Topology I, Academic Press, New York, 1966. [MR: 217751] [Zbl: 0158.40802] [Google Scholar]
  7. [La] L. H. LANDWEBER, Decision Problems for ω-Automata, Math. Syst. Theory, Vol. 3, 1969, pp. 376-384. [MR: 260595] [Zbl: 0182.02402] [Google Scholar]
  8. [LS] R. LINDNER and L. STAIGER., Algebraische Codierungstheorie-Theorie der sequentiellen Codierungen, Akademie-Verlag, Berlin, 1977. [MR: 469495] [Zbl: 0363.94016] [Google Scholar]
  9. [Sc 1] C. P. SCHNORR, Zufälligkeit und Wahrscheinlichkeit, L.N.M. 218, Springer-Verlag, Berlin-Heidelberg-New York, 1971. [MR: 414225] [Zbl: 0232.60001] [Google Scholar]
  10. [Sc 2] C. P. SCHNORR, Process Complexity and Effective Random Tests, J. Comput. Syst. Sci., Vol. 7, No. 4, 1973, pp. 376-388. [MR: 325366] [Zbl: 0273.68036] [Google Scholar]
  11. [St 1] L. STAIGER, Über ein Analogon des Satzes von Ginsburg-Rose für sequentielle Folgenoperatoren und reguläre Folgenmengen, Dipl. Arbeit, Friedrich-Schiller-Universität, Jena 1970. [Google Scholar]
  12. [St 2] L. STAIGER, Zur Topologie der regularen Mengen, Diss. A, Friedrich-Schiller-Universtität, Jena 1976. [Google Scholar]
  13. [St 3] L. STAIGER, Projection Lemmas for ω-Languages, Theoret Comput. Sci., Vol. 32, 1984, pp. 331-337. [MR: 761351] [Zbl: 0545.68074] [Google Scholar]
  14. [St 4] L. STAIGER, Hierarchies of Recursive ω-Languages, E.I.K.-J. Inform. Process and Cybernetics, Vol. 22, No. 5/6, 1986, pp. 219-241. [MR: 855527] [Zbl: 0627.03024] [Google Scholar]
  15. [SW 1] L. STAIGER and K. WAGNER, Zur Theorie der abstrakten Familien von ω-Sprachen (ω-AFL), in Algorithm. Kompliziertheit, Lern - und Erkennungsprozesse, Jena 1976, pp. 79-91. [MR: 455575] [Zbl: 0447.68088] [Google Scholar]
  16. [SW 2] L. STAIGER and K. WAGNER, Rekursive Folgenmengen I, Zeitschr. Math. Logik u. Grundl. Math., Vol. 24, 1978, pp. 523-538. [MR: 511706] [Zbl: 0421.03035] [Google Scholar]
  17. [Wa 1] K. WAGNER, Arithmetische Operatoren, Zeitschr. Math. Logik u. Grundl. Math., Vol. 22, 1976, pp. 553-570. [MR: 537535] [Zbl: 0352.02031] [Google Scholar]
  18. [Wa 2] K. WAGNER, On ω-Regular Sets, Inform. Control., Vol. 43, 1979, pp. 123-177. [MR: 553694] [Zbl: 0434.68061] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.