Open Access
Issue |
RAIRO-Theor. Inf. Appl.
Volume 59, 2025
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/ita/2024016 | |
Published online | 03 January 2025 |
- AIM Minimum Rank Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S. M. Cioaba, D. Cvetkovic, S. M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanovic, H. van der Holst, K. Vander Meulen, A. Wangsness), Zero forcing sets and the minimum rank of graphs. Linear Algebra App. 428 (2008) 1628-1648. [CrossRef] [Google Scholar]
- V.I. Hicks, B. Brimkov, L. Deaett, R. Haas, D. Mikesell, D. Roberson, L. Smith, Computational and theoretical challenges for computing the minimum rank of a graph, INFORMS J. Comput. 34 (2022) 2868-2872. [CrossRef] [MathSciNet] [Google Scholar]
- S.M. Fallat, L. Hogben, C.-H. Jephian, B.L. Lin, Shader, The inverse eigenvalue problem of a graph, zero forcing, and related parameters, AMS Commun. 67 (2020) 257-261. [Google Scholar]
- D. Burgarth, V. Giovannetti, Full control by locally induced relaxation, Phys. Rev. Lett. 99 (2007) 100501. [CrossRef] [PubMed] [Google Scholar]
- P. Darbec, S. Klavzar, Generalized power domination: Propagation radius and Sierpi’nski graphs, Acta Applicandae Mathematicae, 134 (2014) 75-86. [CrossRef] [MathSciNet] [Google Scholar]
- B. Brimkov, C.C. Fast, V. Illya, V.I. Hicks, Computational approaches for zero forcing and related problems, Eur. J. Oper. Res., 273 (2019) 889-903. [CrossRef] [Google Scholar]
- J. Anitha, I. Rajasingh, 1-Factor forcing in certain interconnection networks, Procedia Comput. Sci. 172 (2020) 192-197. [Google Scholar]
- G.J. Sujana, T.M. Rajalaxmi, I. Rajasingh, R.S. Rajan, Edge-forcing in butterfly networks, Fundamenta Informaticae, 182 (2021) 285-299. [CrossRef] [MathSciNet] [Google Scholar]
- D.J. Brueni, L.S. Heath, The PMU placement problem, SIAM J. Discrete Math. 19 (2005) 744-761. [CrossRef] [MathSciNet] [Google Scholar]
- T.L. Baldwin, Power system observability with minimum phasor measurement placement, IEEE Trans. Power Syst. 8 (1993). [Google Scholar]
- D. Burgarth, K. Maruyama, Indirect Hamiltonian identification through a small gateway, New J. Phys. 11 (2009) 103019. [CrossRef] [Google Scholar]
- D. Amos, Y. Caro, R. Davila, R. Pepper, Upper bounds on the k-forcing number of a graph, Discrete Appl. Math. 181 (2015) 1-10. [CrossRef] [MathSciNet] [Google Scholar]
- R. Davila, F. Kenter, Bounds for the zero forcing number of graphs with large girth, Theory Appl. Graphs 2 (2015) 1-10. [MathSciNet] [Google Scholar]
- S. Rashidi, S.N. Poursalvati, M. Tavakkoli, Computing the zero forcing number for generalized Petersen graphs, J. Algebra Combinatorics Discrete Struct. Appl. 7 (2019) 183-193. [Google Scholar]
- E. Vatandoost, F. Ramezani, S. Alikhan, On the zero forcing number of generalized Sierpinski graphs, Trans. Combinatorics 8 (2019) 41-50. [MathSciNet] [Google Scholar]
- K.F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben, V. Vasilevskak, B. Wissman, Zero forcing and power domination for graph products, https://arxiv.org/abs/1510.02421 [Google Scholar]
- L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker, M. Young, Propagation time for zero forcing on a graph, 6 (2012) 1994-2005. [Google Scholar]
- R. Davila, M.A. Henning, On the total forcing number of a graph, Discrete Appl. Math. 257 (2019) 115-127. [CrossRef] [MathSciNet] [Google Scholar]
- R. Davila, M.A. Henning, C. Magnant, R. Pepper, Bounds on the connected forcing number of a graph, Graphs Combinatorics, 34 (2018) 1159-1174. [CrossRef] [MathSciNet] [Google Scholar]
- S. Klavzar, Coloring Sierpiński graphs and Sierpiński gasket graphs, Taiwanese J. Math. 12 (2008) 513-522. [CrossRef] [MathSciNet] [Google Scholar]
- T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, M.A. Henning, Power domination in graphs applied to electrical power networks, SIAM J. Discrete Math., 15 (2002) 519-529. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Rao, Kosari, S. Kosari, J. Anitha, I. Rajasingh, H. Rashmanlou, Forcing parameters in fully connected cubic networks, Mathematics 10 (2022) 1263. [CrossRef] [Google Scholar]
- G.J. Sujana, T.M. Rajalaxmi, Forcing sets in triangular grid networks, Procedia Comput. Sci. 1 (2020) 159-164. [Google Scholar]
- A.M. Hinz, S. Klavźzar, S.S. Zemljićc, A survey and classification of Sierpiński graphs, Discrete Appl. Math. 217 (2017) 565-600. [CrossRef] [MathSciNet] [Google Scholar]
- L. Barriére, F. Comellas, F. Dalfoó, Fractality and the small-world effect in Sierpiński graphs, J. Phys. A Math. Gen. 39 (2006) 11739-11753. [CrossRef] [Google Scholar]
- N. Cohen, Fractal antenna applications in wireless telecommunications, Professional Program Proceedings, Electron. Ind. Forum New Engl. IEEE (1997) 43-49 https://10.1109/EIF.1977.605374. [Google Scholar]
- R. Reiner, Fractal structures for low-resistance large area AlGaN/GaN power transistors, in: 24th International Symposium on Power Semiconductor Devices and ICs, IEEE, 2012. [Google Scholar]
- D.H. Werner, G. Suman, An overview of fractal antenna engineering research, IEEE Antennas Propag. Mag. 45 (2003) 38-57. [CrossRef] [Google Scholar]
- H. Kunze, L.D. Davide La Torre, F. Mendivil, E.R. Vrscay, Fractal-Based Methods in Analysis, Book, Springer, 2012. [CrossRef] [Google Scholar]
- E. Yi, On zero forcing number of permutation graphs, in: G. Lin (Ed.), Combinatorial Optimization and Applications, COCOA 2012, Lect. Notes Comput. Sci. 7402 (2012) 61-72. [Google Scholar]
- S. Hayat, H.M.A. Siddiqui, M. Imran, H.M. Ikhlaq, On the Zero Forcing Number and Propagation Time of Oriented Graphs, Vol. 6, AIMS Press, (2020) 1833-1850. [Google Scholar]
- M. Gentner, L.D. Penso, D. Rautenbach, U.S. Souza, Extremal values and bounds for the zero forcing number, Discrete Appl. Math. 214 (2016) 196-200. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.