RAIRO-Theor. Inf. Appl.
Volume 58, 2024
Randomness and Combinatorics - Edited by Luca Ferrari & Paolo Massazza
Article Number 15
Number of page(s) 17
Published online 03 June 2024
  1. A.W. Kemp and J. Newton, Certain state-dependent processes for dichotomized parasite populations. J. Appl. Probab. 27 (1990) 251–258. [Google Scholar]
  2. A.W. Kemp, Heine–Euler extensions of the Poisson distribution. Commun. Statist. Theory Methods 21 (1992) 571–588. [Google Scholar]
  3. A.W. Kemp, Steady-state Markov chain models for the Heine and Euler distributions. J. Appl. Probab. 29 (1992) 869–876. [Google Scholar]
  4. C.A. Charalambides, Discrete q-distributions on Bernoulli trials with geometrically varying success probability. J. Statist. Plann. Inference 140 (2010) 2355–2383. [Google Scholar]
  5. C.A. Charalambides, Discrete q-Distributions. John Wiley Sons, New Jersey (2016). [Google Scholar]
  6. C.A. Charalambides, q-Multinomial and negative q-multinomial distributions. Commun. Stat. Theory Methods 50 (2021) 5673–5898. [Google Scholar]
  7. A. Kyriakoussis and M.G. Vamvakari, q-Discrete distributions based on q-Meixner and q-Charlier orthogonal polynomials – asymptotic behaviour. J. Statist. Plann. Inference 140 (2010) 2285–2294. [Google Scholar]
  8. A. Kyriakoussis and M.G. Vamvakari, On a q-analogue of the Stirling formula and a continuous limiting behaviour of the q-Binomial distribution – numerical calculations. Method. Comput. Appl. Probab. 15 (2013) 187–213. [Google Scholar]
  9. A. Kyriakoussis and M.G. Vamvakari, Continuous Stieltjes–Wigert limiting behaviour of a family of confluent q-Chu- Vandermonde distributions. Axioms 3 (2014) 140–152. [Google Scholar]
  10. A. Kyriakoussis and M.G. Vamvakari, Heine process as a q-analog of the Poisson process – waiting and interarrival times. Commun. Statist. Theory Methods 46 (2017) 4088–4102. [Google Scholar]
  11. A. Kyriakoussis and M.G. Vamvakari, Asymptotic behaviour of certain q-Poisson, q-binomial and negative q-binomial distributions, in Lattice path combinatorics and applications. Developments in Mathematics 58, edited by G. E. Andrews et al. Springer Nature, Switzerland AG (2019). [Google Scholar]
  12. M. Vamvakari, On multivariate discrete q-distributions – a multivariate q-Cauchy’s formula. Commun. Statist. Theory Methods 49 (2020) 6080–6095. [Google Scholar]
  13. C.A. Charalambides, Multivariate q-Pólya and inverse q-Pólya distributions. Commun. Statist. Theory Methods. Available online (2020). [Google Scholar]
  14. M.G. Vamvakari, On continuous limiting behaviour for the q(n)-Binomialdistribution with q(n) → 1 as n → ∞. Appl. Math. 3 (2012) 2101–2108. [Google Scholar]
  15. A.M. Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, edited by R.L. Graham, M. Grötschel and L. Lovász. Elsevier Science Publishers, Amsterdam (1995) 1063–1229. [Google Scholar]
  16. C.A. Charalambides, A q-Pólya urn model and the q-Pólya and the inverse q-Pólya distributions. J. Stat. Plann. Inference 142 (2012) 276–288. [Google Scholar]
  17. C.A. Charalambides, On the distributions of absorbed particles in crossing a field containing absorption distributions. Fund. Inform. 117 (2012) 147–154. [Google Scholar]
  18. A.W. Kemp, Steady-state Markov chain models for certain q-confluent hypergeometric distributions. J. Statist. Plann. Inference 135 (2005) 107–120. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.