Open Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 56, 2022
Article Number 1
Number of page(s) 11
DOI https://doi.org/10.1051/ita/2022001
Published online 07 February 2022
  1. J. Akiyama and F. Harary, A graph and its complement with specified properties I: Connectivity. Int. J. Math. Math. Sci. 2 (1979) 223–228. [CrossRef] [Google Scholar]
  2. M. Albenque and K. Knauer, Convexity in partial cubes: the hull number, in LATIN 2014: Theoretical Informatics. Springer (2014) 421–432. [CrossRef] [Google Scholar]
  3. J. Araujo, V. Campos, F. Giroire, N. Nisse, L. Sampaio and R. Soares, On the hull number of some graph classes. Theor. Comput. Sci. 475 (2013) 1–12. [Google Scholar]
  4. J. Araujo, G. Morel, L. Sampaio, R. Soares and V. Weber, Hull number: P5-free graphs and reduction rules. Discr. Appl. Math. 210 (2016) 171–175. [CrossRef] [Google Scholar]
  5. S. Bessy, M.C. Dourado, L.D. Penso and D. Rautenbach, The geodetic hull number is hard for chordal graphs. SIAM J. Discr. Math. 32 (2018) 543–547. [CrossRef] [Google Scholar]
  6. B. Bollobás, The Art of Mathematics: Coffee Time in Memphis. Cambridge University Press (2006). [CrossRef] [Google Scholar]
  7. P.P. Camargo, U.S. Souza and J.R. Nascimento, Remarks on k-clique, k-independent set and 2-contamination in complementary prisms. Int. J. Found. Comput. Sci. (2021) 1–16. [Google Scholar]
  8. M.R. Cappelle, L. Penso and D. Rautenbach, Recognizing some complementary products. Theor. Comput. Sci. 521 (2014) 1–7. [CrossRef] [Google Scholar]
  9. D. Castonguay, E.M.M. Coelho, H. Coelho and J.R. Nascimento, On the geodetic hull number for complementary prisms II. RAIRO-Oper. Res. 55 (2021) S2403–S2415. [CrossRef] [EDP Sciences] [Google Scholar]
  10. V. Chvátal, C.T. Hoàng, N.V.R. Mahadev and D. De Werra, Four classes of perfectly orderable graphs. J. Graph Theory 11 (1987) 481–495. [CrossRef] [MathSciNet] [Google Scholar]
  11. E.M.M. Coelho, H. Coelho, J.R. Nascimento and J.L. Szwarcfiter, On the geodetic hull number of complementary prisms. Preprint arXiv:1807.08295 (2018). [Google Scholar]
  12. E.M.M. Coelho, H. Coelho, J.R. Nascimento and J.L. Szwarcfiter, On the P3-hull number of some products of graphs. Discr. Appl. Math. 253 (2019) 2–13. [CrossRef] [Google Scholar]
  13. D. Corneil, H. Lerchs and L. Burlingham, Complement reducible graphs. Discr. Appl. Math. 3 (1981) 163–174. [CrossRef] [Google Scholar]
  14. P. Domingos and M. Richardson, Mining the network value of customers. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01. ACM, New York, NY, USA (2001) 57–66. [Google Scholar]
  15. M.C. Dourado, J.G. Gimbel, J. Kratochvíl, F. Protti and J.L. Szwarcfiter, On the computation of the hull number of a graph. Discr. Math. 309 (2009) 5668–5674. [CrossRef] [Google Scholar]
  16. M.C. Dourado, L.D. Penso and D. Rautenbach, On the geodetic hull number of Pk-free graphs. Theor. Comp. Sci. 640 (2016) 52–60. [CrossRef] [Google Scholar]
  17. P.A. Dreyer and F.S. Roberts, Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discr. Appl. Math. 157 (2009) 1615–1627. [CrossRef] [Google Scholar]
  18. M.A. Duarte, L. Penso, D. Rautenbach and U. dos Santos Souza, Complexity properties of complementary prisms. J. Combinat. Optim. (2015) 1–8. [Google Scholar]
  19. M.G. Everett and S.B. Seidman, The hull number of a graph. Discr. Math. 57 (1985) 217–223. [CrossRef] [Google Scholar]
  20. A. Farrugia, Self-complementary graphs and generalisations: a comprehensive reference manual. University of Malta (1999). [Google Scholar]
  21. S. Foldes and P.L. Hammer, Split graphs, in Proceedings 8th Southeastern Conference on Combinatorics, Graph Theory and Computing, Louisiana State University, Baton Rouge, LA (1977) 311–315. [Google Scholar]
  22. P.L. Hammer and B. Simeone, The splittance of a graph. Combinatorica 1 (1981) 275–284. [CrossRef] [MathSciNet] [Google Scholar]
  23. T.W. Haynes, M.A. Henning, P.J. Slater and L.C. van der Merwe, The complementary product of two graphs. Bull. Inst. Combinator. Appl. 51 (2007) 21–30. [Google Scholar]
  24. M.M. Kanté and L. Nourine, Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs. SIAM J. Discr. Math. 30 (2016) 311–326. [CrossRef] [Google Scholar]
  25. H. Karami, S.M. Sheikholeslami, A. Khodkar and D.B. West, Connected domination number of a graph and its complement. Graphs Combinator. 28 (2012) 123–131. [CrossRef] [Google Scholar]
  26. D. Peleg, Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282 (2002) 231–257. [Google Scholar]
  27. S.-j. Xu, Some parameters of graph and its complement. Discr. Math. 65 (1987) 197–207. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.