Open Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 55, 2021
Article Number 10
Number of page(s) 16
DOI https://doi.org/10.1051/ita/2021010
Published online 17 September 2021
  1. C. Aguilar-Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.C. Deneuville, P. Gaborit and G. Zémor, Rank quasi-cyclic (rqc) (2017), https://pqc-rqc.org/doc/rqc-specification2017-11-30.pdf. [Google Scholar]
  2. H. Al Shehhi, E. Bellini, F. Borba, F. Caullery, M. Manzano and V. Mateu, An IND-CCA-secure code-based encryption scheme using rank metric. In: Buchmann J., Nitaj A., Rachidi T. (eds) Progress in Cryptology – AFRICACRYPT 2019. Vol. 11627 of Lecture Notes in Computer Science. Springer (2019). [Google Scholar]
  3. N. Aragon, O. Blazy, J.C. Deneuville, P. Gaborit, A. Hauteville, O. Ruatta, J.P. Tillich, G. Zémor, C. Aguilar Melchor, S. Bettaieb, L. Bidoux, B. Magali and A. Otmani, ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round submission to the NIST post-quantum cryptography call (2019), https://pqc-rollo.org. [Google Scholar]
  4. N. Aragon, P. Gaborit, A. Hauteville and J-P. Tillich, Improvement of generic attacks on the rank syndrome decoding problem. Des. Codes Cryptogr. 35 (2005) 63–79. [Google Scholar]
  5. M. Bardet, M. Bros, D. Cabarcas, P. Gaborit, R. Perlner, D. Smith-Tone, J.-P. Tillich and J. Verbel, Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems. ASIACRYPT 2020, Vol. 12491 of LNCS. Springer (2020) 507–536. [Google Scholar]
  6. T.P. Berger and P. Loidreau, How to mask the structure of codes for a cryptographic use. Designs Codes Cryptogr. 35 (2005) 63–79. [Google Scholar]
  7. E.R. Berlekamp, R.J. McEliece and H.C. van Tilborg, On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24 (1978) 384–386. [Google Scholar]
  8. F. Chabaud and J. Stern, The cryptographic security of the syndrome decoding problem for rank distance codes. ASIACRYPT (1996) 368–381. [Google Scholar]
  9. E.M. Gabidulin, Attacks and counter-attacks on GPT public key cryptosystem. Des. Codes Cryptogr. 48 (2008) 171–177. [Google Scholar]
  10. E.M. Gabidulin, A.V. Ourivski, B. Honary and B. Ammar, Reducible rank codes and their applications to cryptography. IEEE Trans. Inf. Theory 49 (2003) 3289–3293. [Google Scholar]
  11. P. Gaborit, G. Murat, O. Ruatta and G. Zémor, Low rank parity-check codes and their application to cryptography. In The International Workshop on Coding and Cryptography (WCC 13), Bergen, Norway (2013) 13 p. hal-00913719. [Google Scholar]
  12. P. Gaborit, O. Ruatta and J. Schrek, On the complexity of the Rank Syndrome Decoding problem. IEEE Trans. Inf. Theory 62 (2016) 1006–1019. [Google Scholar]
  13. P. Gaborit and G. Zémor, On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inf. Theory 62 (2016) 7245–7252. [Google Scholar]
  14. J.K. Gibson, Severely denting the Gabidulin version of the McEliece public key cryptosystem. Des. Codes Cryptogr. 6 (1995) 37–45. [Google Scholar]
  15. J.K. Gibson, The security of the Gabidulin public key cryptosystem. Vol. 1070 of EUROCRYPT’96, LNCS (1996) 212–223. [Google Scholar]
  16. A. Hauteville and J-P. Tillich, New algorithms for decoding in the rank-metric and an attack on the LRPC-PKC. IEEE ISIT (2015). [Google Scholar]
  17. F. Hernando and D. Ruano, Decoding of matrix-product codes. J. Algebra Appl. 12 (2013) 1250185. [Google Scholar]
  18. A.L. Horlemann-Trautmann, K. Marshall and J. Rosenthal, Extension of Overbeck’s attack for Gabidulin-based cryptosystems. Des. Codes Cryptogr. 86 (2018) 319–340. [Google Scholar]
  19. E. Kan, E. Gabidulin, B. Honary and H. Ahmed, Modified Niederreiter type of GPT-PKC based on reducible rank codes. Des. Codes Cryptogr. 70 (2014) 231–239. [Google Scholar]
  20. T.S.C. Lau and C.H Tan, A new Gabidulin-like code and its application in cryptography. In: Carlet C., Guilley S., Nitaj A., Souidi E. (eds) Codes, Cryptology and Information Security. C2SI 2019. Vol. 11445 of Lecture Notes in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-030-16458-4˙16. [Google Scholar]
  21. J. Liu, Y. Wang, Z. Yi and Z. Lin, polarRLCE: a new code-based cryptosystem using polar codes. Secur. Commun. Netw. (2019) Article ID 3086975 https://doi.org/10.1155/2019/3086975. [Google Scholar]
  22. P. Loidreau, A new rank metric codes based encryption scheme. PQCrypto, Utrecht, Netherlands (2017) 3–17. [Google Scholar]
  23. P. Loidreau, Métrique rang et cryptographie. HDR thesis, France (2007). [Google Scholar]
  24. I. Marquez-Corbella and J-P Tillich, Using Reed-Solomon codes in the (u|u + v) construction and an application to cryptography. IEEE International Symposium on Information Theory (ISIT) (2016). [Google Scholar]
  25. G. Marsaglia, Bounds for the rank of the sum of two matrices, No. D1-82-0343. In Boeing Scientific Research Labs, Seattle, WA (1964). [Google Scholar]
  26. R.J. McEliece, A public-key cryptosystem based on algebraic coding theory. Des. Codes Cryptogr. 8 (1978) 293–307. [Google Scholar]
  27. H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory. Prob. Contr. Inform. Theory 15 (1986) 157–166. [Google Scholar]
  28. A. Otmani, H.T. Kalachi and S. Ndjeya, Improved cryptanalysis of rank metric schemes based on Gabidulin codes. Des. Codes Cryptogr. 86 (2018) 1983–1996. [Google Scholar]
  29. A.V. Ourivski and T. Johansson, New technique for decoding codes in the rank-metric and its cryptography applications. Prob. Inf. Trans. 38 (2002) 237–246. [Google Scholar]
  30. R. Overbeck, A new structural attack for GPT and variants. Mycrypt 3715 (2005) 50–63. [Google Scholar]
  31. R. Overbeck, Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptology 21 (2008) 280–301. [Google Scholar]
  32. D. Silva and F.R. Kschischang, Fast encoding and decoding of gabidulin codes. In IEEE International Symposium on Information Theory (2009) 2858–2862. [Google Scholar]
  33. A. Wachter-Zeh, Decoding of Block and Convolutional Codes in Rank Metric, Ph.D thesis, University of Rennes 1, France (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.