Issue
RAIRO-Theor. Inf. Appl.
Volume 55, 2021
11th Workshop on Non-classical Models of Automata and Applications (NCMA 2019)
Article Number 9
Number of page(s) 31
DOI https://doi.org/10.1051/ita/2021003
Published online 22 July 2021
  1. J.-M. Autebert, J. Berstel and L. Boasson, Context-free languages and pushdown automata, in Handbook of Formal Languages, Vol. 1, Word, Language, Grammar, edited by G. Rozenberg and A. Salomaa. Springer, Berlin (1997) 111–174. [Google Scholar]
  2. G. Buntrock and F. Otto, Growing context-sensitive languages and Church-Rosser languages. Inf. Comput. 141 (1998) 1–36. [Google Scholar]
  3. E. Dahlhaus and M. Warmuth, Membership for growing context-sensitive grammars is polynomial. J. Comput. Syst. Sci. 33 (1986) 456–472. [Google Scholar]
  4. J.E. Hopcroft and J.D. Ullman, An approach to a unified theory of automata. Bell Syst. Tech. J. 46 (1967) 1793–1829. [Google Scholar]
  5. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, MA (1979). [Google Scholar]
  6. P. Jančar, F. Mráz, M. Plátek and J. Vogel, Restarting automata, in FCT’95, Proc., edited by H. Reichel. Lecture Notes in Computer Science 965. Springer, Berlin (1995) 283–292. [Google Scholar]
  7. P. Jančar, F. Mráz, M. Plátek and J. Vogel, On monotonic automata with a restart operation. J. Autom. Lang. Combin. 4 (1999) 287–311. [Google Scholar]
  8. T. Jurdziński, K. Loryś, G. Niemann and F. Otto, Some results on RWW- and RRWW-automata and their relation to the class of growing context-sensitive languages. J. Autom. Lang. Combin. 9 (2004) 407–437. [Google Scholar]
  9. T. Jurdziński, F. Mráz, F. Otto and M. Plátek, Degrees of non-monotonicity for restarting automata. Theor. Computer Sci. 369 (2006) 1–34. [Google Scholar]
  10. T. Jurdziński and F. Otto, Shrinking restarting automata. Int. J. Found. Comput. Sci. 18 (2007) 361–385. [CrossRef] [Google Scholar]
  11. T. Jurdziński, F. Otto, F. Mráz and M. Plátek, On left-monotone deterministic restarting automata, in DLT 2004, Proc., edited by C.S. Calude, E. Calude and M.J. Dinneen. Lecture Notes in Computer Science 3340. Springer, Berlin (2004) 249–260. [Google Scholar]
  12. M. Kutrib and F. Otto, On the descriptional complexity of the window size for deleting restarting automata. Int. J. Found. Comput. Sci. 24 (2013) 831–846. [Google Scholar]
  13. M. Kutrib and J. Reimann, Succinct description of regular languages by weak restarting automata. Inf. Comput. 206 (2008) 1152–1160. [Google Scholar]
  14. K. Kwee and F. Otto, On ordered RRWW-automata, in DLT 2016, Proc., edited by S. Brlek and C. Reutenauer. Lecture Notes in Computer Science 9840. Springer, Heidelberg (2016) 268–279. [Google Scholar]
  15. K. Kwee and F. Otto, On the effects of nondeterminism on ordered restarting automata, in SOFSEM 2016, Proc., edited by R.M. Freivalds, G. Engels and B. Catania. Lecture Notes in Computer Science 9587. Springer, Heidelberg (2016) 369–380. [Google Scholar]
  16. K. Kwee and F. Otto, Nondeterministic ordered restarting automata. Int. J. Found. Comput. Sci. 29 (2018) 663–685. [Google Scholar]
  17. R. McNaughton, P. Narendran and F. Otto, Church-Rosser Thue systems and formal languages. J. Assoc. Comput. Mach. 35 (1988) 324–344. [Google Scholar]
  18. F. Mráz, Lookahead hierarchies of restarting automata. J. Autom. Lang. Combin. 6 (2001) 493–506. [Google Scholar]
  19. F. Mrázand F. Otto, Ordered restarting automata for picture languages, in SOFSEM 2014, Proc., edited by V. Geffert, B. Preneel, B. Rovan, J. Štuller and A. Min Tjoa. Lecture Notes in Computer Science 8327. Springer, Heidelberg (2014) 431–442. [Google Scholar]
  20. F. Mráz and F. Otto. Window size two suffices for deterministic monotone RWW-automata, in Eleventh Workshop on Non-Classical Models of Automata and Applications (NCMA 2019), Proc., edited by R. Freund, M. Holzer, and J.M. Sempere. volume 336 of books@ocg.at. Österreichische Computer Gesellschaft, Wien, (2019) 139–154. [Google Scholar]
  21. F. Mráz and F. Otto. On shrinking restarting automata of window size one and two, in DLT 2019, Proc., edited by P. Hofman and M. Skrzypczak. Lecture Notes in Computer Science 11647. Springer, Heidelberg (2019) 140–153. [Google Scholar]
  22. B. Nagy, On a hierarchy of 5→ 3 sensing Watson-Crick finite automata languages. J. Logic Comput. 23 (2013) 855–872. [Google Scholar]
  23. G. Niemann and F. Otto, Restarting automata, Church-Rosser languages, and confluent internal contextual languages. Mathematische Schriften Kassel 4/99, Universität Kassel (1999). [Google Scholar]
  24. G. Niemann and F. Otto, Restarting automata, Church-Rosser languages, and representations of r.e. languages, in Developments in Language Theory – Foundations, Applications, and Perspectives, DLT 1999, Proc., edited by G. Rozenberg and W. Thomas. World Scientific, Singapore (2000) 103–114. [Google Scholar]
  25. G. Niemann and F. Otto, The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages. Inf. Comput. 197 (2005) 1–21. [Google Scholar]
  26. F. Otto and T. Jurdziński, On left-monotone restarting automata. Mathematische Schriften Kassel 17/03, Universität Kassel (2003). [Google Scholar]
  27. N. Schluter, On lookahead hierarchies for monotone and deterministic restarting automata with auxiliary symbols (Extended abstract), in DLT 2010, Proc., edited by Y. Gao, H. Lu and S. Seki. Lecture Notes in Computer Science 6224. Springer, Berlin (2010) 440–441. [Google Scholar]
  28. N. Schluter, Restarting automata with auxiliary symbols and small lookahead, in LATA 2011, Proc., edited by A.H. Dediu, S. Inenaga and C. Martín-Vide. Lecture Notes in Computer Science 6638. Springer, Berlin (2011) 499–510. [Google Scholar]
  29. N. Schluter, Restarting automata with auxiliary symbols restricted by lookahead size. Int. J. Computer Math. 92 (2015) 908–938. [Google Scholar]
  30. B. v. Braunmühl and R. Verbeek, Finite-change automata, in 4th GI Conference, Proc., edited by K. Weihrauch. Lecture Notes in Computer Science 67. Springer, Berlin (1979) 91–100. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.