Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 55, 2021
Article Number 1
Number of page(s) 15
DOI https://doi.org/10.1051/ita/2020008
Published online 20 January 2021
  1. J.-P. Allouche, M. Baake, J. Cassaigne and D. Damanik, Palindrome complexity. Theor. Comput. Sci. 292 (2003) 9–31. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Baláži, Z. Masáková and E. Pelantová, Factor versus palindromic complexity of uniformly recurrent infinite words. Theor. Comput. Sci. 380 (2007) 266–275. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Balková, Beta-integers and Quasicrystals, PhD thesis, Czech Technical University in Prague and Université Paris Diderot-Paris 7 (2008). [Google Scholar]
  4. L. Balková, E. Pelantová and Š. Starosta, Sturmian jungle (or garden?) on multiliteral alphabets. RAIRO: ITA 44 (2010) 443–470. [Google Scholar]
  5. A. Blondin Massé, S. Brlek, S. Labbé and L. Vuillon, Palindromic complexity of codings of rotations. Theor. Comput. Sci. 412 (2011) 6455–6463. [CrossRef] [Google Scholar]
  6. M. Bucci, A. De Luca, A. Glen and L.Q. Zamboni, A connection between palindromic and factor complexity using return words. Adv. Appl. Math. 42 (2009) 60–74. [CrossRef] [Google Scholar]
  7. M. Bucci, A. De Luca, A. Glen and L.Q. Zamboni, A new characteristic property of rich words. Theor. Comput. Sci. 410 (2009) 2860–2863. [CrossRef] [MathSciNet] [Google Scholar]
  8. X. Droubay, J. Justin and G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci. 255 (2001) 539–553. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Glen, J. Justin, S. Widmer and L.Q. Zamboni, Palindromic richness. Eur. J. Combin. 30 (2009) 510–531. [CrossRef] [Google Scholar]
  10. C. Guo, J. Shallit and A.M. Shur, Palindromic rich words and run-length encodings. Inform. Process. Lett. 116 (2016) 735–738. [CrossRef] [Google Scholar]
  11. D. Kosolobov, M. Rubinchik and A.M. Shur, Palk is linear recognizable online, in SOFSEM 2015: Theory and Practice of Computer Science, edited by G.F. Italiano, T. Margaria-Steffen, J. Pokorný, J.-J. Quisquater and R. Wattenhofer. Springer, Berlin Heidelberg (2015) 289–301. [CrossRef] [Google Scholar]
  12. E. Pelantová and Š. Starosta, On words with the zero palindromic defect, in Combinatorics on Words, edited by S. Brlek, F. Dolce, C. Reutenauer and É. Vandomme. Springer International Publishing, Cham (2017) 59–71. [CrossRef] [Google Scholar]
  13. E.A. Petrova and A.M. Shur, Transition property for cube-free words, in Computer Science – Theory and Applications, edited by R. van Bevern and G. Kucherov. Springer International Publishing, Cham (2019) 311–324. [CrossRef] [Google Scholar]
  14. M. Rubinchik and A.M. Shur, The number of distinct subpalindromes in random words. Fund. Inform. 145 (2016) 371–384. [Google Scholar]
  15. J. Rukavicka, On the number of rich words, Developments in Language Theory: 21st International Conference, DLT 2017, Liège, Belgium, August 7–11, 2017. Proceedings, Springer International Publishing (2017) 345–352. [Google Scholar]
  16. J. Rukavicka, Transition property for α-power free languages with α ≥ 2 and k ≥ 3 letters, in Developments in Language Theory, edited by N. Jonoska and D. Savchuk. Springer International Publishing, Cham (2020) 294–303. [CrossRef] [Google Scholar]
  17. L. Schaeffer and J. Shallit, Closed, palindromic, rich, privileged, trapezoidal, and balanced words in automatic sequences. Electr. J.Comb. 23 (2016) 1.25. [CrossRef] [Google Scholar]
  18. J. Shallitand A. Shur, Subword complexity and power avoidance. Special issue in honor of the 70th birthday of Prof. Wojciech Rytter. Theor. Comp. Sci. 792 (2019) 96–116. [CrossRef] [Google Scholar]
  19. J. Vesti, Extensions of rich words. Theor. Comput. Sci. 548 (2014) 14–24. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.