Free Access
Issue |
RAIRO-Theor. Inf. Appl.
Volume 31, Number 1, 1997
|
|
---|---|---|
Page(s) | 67 - 79 | |
DOI | https://doi.org/10.1051/ita/1997310100671 | |
Published online | 01 February 2017 |
- 1. C. H. BENNETT, Logical Reversibility of Cornputation. IBM J. Res. Dev. 17, 1973, pp. 525-523. [MR: 449020] [Zbl: 0267.68024] [Google Scholar]
- 2. P. HARTMAN, Ordinary Differential Equations. Birkhäuser, 1982. [MR: 658490] [Google Scholar]
- 3. J. E. HOPCROFT and J. D. ULLMAN, Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979. [MR: 645539] [Zbl: 0426.68001] [Google Scholar]
- 4. P. KOIRAN, P. COSNARD and M. GARZON, Computability with Low-Dimensional Dynamical Systems. Theoret Comput. Sci. 132, 1994, pp. 113-128. [MR: 1290538] [Zbl: 0821.68053] [Google Scholar]
- 5. C. MOORE, Unpredictability and Undecidability in Dynamical Systems. Phys. Rev. Lett. 64, 1990, pp. 2354-2357. [MR: 1050259] [Zbl: 1050.37510] [Google Scholar]
- 6. C. MOORE, Generalized Shifts: Unpredictability and Undecidability in Dynamical Systems. Nonlinearity 4, 1991, pp. 199-230. [MR: 1107005] [Zbl: 0725.58013] [Google Scholar]
- 7. M. Y. LECERF, Machines de Turing réversibles. Récursive insolubilité en n ∈ N de l'équation u = θnu, où θ est un "isomorphisme de codes". Comptes Rendus 257, 1963, pp. 2597-2600. [MR: 175790] [Zbl: 0192.06901] [Google Scholar]
- 8. M. B. POUR-EL and I. RICHARDS, A Computable Ordinary Differential Equation which Possesses No Computable Solutions. Ann. Math. Logic 17, 1979, pp. 61-90. [MR: 552416] [Zbl: 0424.68028] [Google Scholar]
- 9. M. B. POUR-EL and I. RICHARDS, Computability in Analysis and Physics. Springer-Verlag, 1989. [MR: 1005942] [Zbl: 0678.03027] [Google Scholar]
- 10. E. O. ROXIN, Ordinary Differential Equations. Wadsworth, 1972. [MR: 463536] [Zbl: 0255.34001] [Google Scholar]
- 11. K. RUOHONEN, Undecidability of Event Detection for ODEs. J. Inform. Proc. Cybern. EIK, 29, 1993, pp. 101-113. [Zbl: 0771.65035] [Google Scholar]
- 12. K. RUOHONEN, Event Detection and Nonrecursive Hierarchies. Results and Trends in Theoretical Computer Science (J. Karhumäki, H. Maurer and G. Rozenberg, Eds.). Lecture Notes in Computer Science 812. Springer-Verlag, 1994, pp. 358-371. [MR: 1286976] [Google Scholar]
- 13. K. RUOHONEN, Decidability and Complexity of Event Detection Problems for ODEs. To appear in Complexity. [Zbl: 0878.68062] [MR: 1473602] [Google Scholar]
- 14. K. RUOHONEN, Reversible Machines and Post's Correspondence Problem for Biprefix Morphisms. Elektron. Inf.verarb. Kybern. EIK 21, 1985, pp. 579-595. [MR: 825861] [Zbl: 0604.68057] [Google Scholar]
- 15. L. F. SHAMPINE, I. GLADWELL and R. W. BRANKIN, Reliable Solution of Special Event Location Problems for ODEs. ACM Trans. Math. Software 17, 1991, pp. 11-25. [MR: 1103624] [Zbl: 0900.65208] [Google Scholar]
- 16. H. T. STEGELMANN, Computation Beyond the Turing Limit. Science 268, 1995, pp. 545-548. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.