Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 29, Number 3, 1995
Page(s) 227 - 244
DOI https://doi.org/10.1051/ita/1995290302271
Published online 01 February 2017
  1. 1. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The design and Analysis of Computer Algorithms, Addison-Wesley Series in Computer Science and Information Processing, 1974. [MR: 413592] [Zbl: 0326.68005]
  2. 2. O. BABAOGLU and M. RAYNAL, Sequence-Based Global Predicates for Distributed Computations: Definitions and Detection Algorithms, IRISA research report No. 729, Mai 1993.
  3. 3. G. BIRKHOFF, Rings of Sets, Duke Math., 1937, J-3, pp. 311-316. [MR: 1545989]
  4. 4. R. BONNET and M. POUZET, Extensions et stratifications d'ensembles dispersés, C. R. Acad. Sci. Paris, 1969, t. 268, Série A, pp. 1512-1515. [MR: 242726] [Zbl: 0188.04203]
  5. 5. J. P. BORDAT, Calcul des idéaux d'un ordoné fini, Recherche opérationnelle/Operations Research, 1991, 25, n° 4, pp. 265 à 275. [EuDML: 105014] [MR: 1128468] [Zbl: 0733.90038]
  6. 6. J. P. BORDAT, Sur l'algorithme combinatoire d'ordres finis, Doctorat d'État es Sciences USTL Montpellier, 1992.
  7. 7. V. BOUCHITTÉ and M. HABIB, The Calculation of Invariants of Ordered Sets, I. Rival (ed.), Algorithms and Order, 231-279, NATO Series C, 255, Kluwer Academic Publishers, 1989. [Zbl: 1261.06002] [MR: 1037785]
  8. 8. G. CHATY and M. CHEIN, Ordered Matchings and Matchings without Alternating Cycles in Bipartite Graphs, Utilitas Mathematica, 1979, 16, pp. 183-187. [MR: 556990] [Zbl: 0446.05037]
  9. 9. R. COOPER and K. MARZULLO, Consistent Detection of Global Predicates, In Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 163-173, Santa Cruz, California, May 1991.
  10. 10. C. DIEHL, Analyse de la relation de causalité dans les exécutions réparties, Thèse, 14 Septembre 1992, Université de Rennes 1.
  11. 11. C. DIEHL, C. JARD and J. X. RAMPON, Reachability Analysis on Distributed Executions, TAPSOFT'93: Theory and Practice of Software Development, in Lecture Notes in Computer Science, 1993, No. 668, Springer-Verlag, pp. 629-643. [MR: 1236494]
  12. 12. C. DIEHL, C. JARD and J. X. RAMPON, Computing On-Line the Covering Graph of the Ideal Lattice of Posets, IRISA research report No. 703, February 1993.
  13. 13. C. FIDGE, Timestamps in Message Passing Systems that Preserve the Partial Ordering, In Proc. 11th Australian Computer Science Conference, 55-66, February 1988.
  14. 14. M. HABIB and L. NOURINE, Linear Time Recognition Algorithm for Distributive Lattices, Order 11: pp. 197-210, 1994.
  15. 15. R. JANICKI and M. KOUNTY, Structure of Concurrency, Theoretical Computer Science, 1993, 772, pp. 5-52. [MR: 1221149] [Zbl: 0814.68061]
  16. 16. G. V. JOURDAN, J. X. RAMPON and C. JARD, Computing On-Line the Maximal Antichain Lattice of Posets, Order 11: pp. 197-210, 1994. [MR: 1308475] [Zbl: 0814.06004]
  17. 17. Y. KODA and F. RUSKEY, A Gray Code for the Ideals of a Forest Poset, Journal of Algorithms, 1993, 15, pp. 324-340. [MR: 1231447] [Zbl: 0782.94014]
  18. 18. L. LAMPORT, Time, Clocks and the Ordering of Events in a Distributed System, Communications of the ACM, July 1978, 21 (7), pp. 558-565. [Zbl: 0378.68027]
  19. 19. F. MATTERN, Virtual Time and Global States of Distributed Systems, In Cosnard, Quinton, Raynal and Robert, editors, Proc. Int. Workshop on Parallel and Distributed Algorithms, Bonas France October 1988, North-Holland, 1989. [Zbl: 0648.68036] [MR: 1053973]
  20. 20. G. STEINER, An Algorithm to Generate the Ideals of a Partial Order, Operations Research Letters, 1986, No. 6, pp. 317-320. [MR: 875784] [Zbl: 0608.90075]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.