Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 29, Number 3, 1995
Page(s) 209 - 226
DOI https://doi.org/10.1051/ita/1995290302091
Published online 01 February 2017
  1. 1. R. CORI and D. PERRIN, Automates et commutations partielles, Informatique Théorique et Applications, 1985, 19, pp.21-32. [EuDML: 92219] [MR: 795769] [Zbl: 0601.68055]
  2. 2. V. DIEKERT, Combinatorics on Traces, Lecture Notes in Comp. Sci., 1987, 454, Springer-Verlag. [MR: 1075995] [Zbl: 0717.68002]
  3. 3. S. EILENBERG, Automata, Languages and Machines B, Academic Press, 1976. [Zbl: 0359.94067]
  4. 4. P. GASTIN, A. PETIT and W. ZIELONKA, An extension of Kleene's and Ochmanski's theorems to infinite traces, Theoret. Comp. Sci., 1994, 125, pp. 167-204. [MR: 1264131] [Zbl: 0795.68116]
  5. 5. K. KURATOWSKI and A. MOSTOWSKI, Set Theory, North Holland, 1976. [MR: 485384] [Zbl: 0337.02034]
  6. 6. J. D. Jr. MCKNIGHT, Kleene quotient theorems, Pacific J. of Math., 1964, 14, pp. 1343-1352. [MR: 180612] [Zbl: 0144.01201]
  7. 7. J. D. Jr. MCKNIGHT and A. J. STOREY, Equidivisible semigroups, J. Algebra, 1969, 12, pp.24-48. [MR: 238982] [Zbl: 0192.34504]
  8. 8. G. LALLEMENT, Semigroups and Combinatorial Applications, John Wiley and Sons, 1979. [MR: 530552] [Zbl: 0421.20025]
  9. 9. F. W. LEVI, On semigroups, Bull. Calcutta Math. Soc., 1944, 36, pp. 141-146. [MR: 11694] [Zbl: 0061.02405]
  10. 10. L. PETRONE and M. P. SCHÜTZENBERGER, Sur un problème de McNaughton, Report, CETTS-EURATOM, 1963.
  11. 11. J. E. PIN, Hiérarchies de concaténation, RAIRO Informatique Théorique, 1984, 18, pp. 23-46. [EuDML: 92197] [MR: 750449] [Zbl: 0559.68062]
  12. 12. J. E. PIN, Varieties of Formal Languages, North Oxford Academic, 1986. [MR: 912694] [Zbl: 0655.68095]
  13. 13. C. REUTENAUER, Sur les variétés de langages et de monoïdes. In Theoretical Computer Science 4th GI Conference (Ed. K. WEIHRAUCH), Lecture Notes in Comp. Sci. 67, Springer-Verlag, 1979, pp. 260-265. [MR: 568110] [Zbl: 0411.68066]
  14. 14. M. P. SCHÜTZENBERGER, On finite monoids having only trivial semigroups, Information and Control, 1965, 8, pp. 190-194. [MR: 176883] [Zbl: 0131.02001]
  15. 15. M. P. SCHÜTZENBERGER, Sur certaines variétés de monoïdes finis, In Automata Theory, (Ed. E. R. CAIANIELLO), Academic Press, 1966, pp. 314-319. [MR: 205766] [Zbl: 0192.07901]
  16. 16. I. SIMON, The product of rational languages. In Automata, Languages and Programming, (Ed. A. LINGAS, R. KARLSSON and S. CARLSSON), Lecture Notes in Comp. Sci. 700, Springer-Verlag, 1993, pp. 430-444. [MR: 1252424]
  17. 17. H. STRAUBING, A generalization of the Schützenberger product of finite monoids, Theoret. Comp. Sci., 1981, 13, pp. 137-150. [MR: 594057] [Zbl: 0456.20048]
  18. 18. P. WEIL, Concatenation product: a survey. In Formal Properties of Finite Automata and Applications, (Ed. J. E. PIN), Lecture Notes in Comp. Sci. 386, Springer-Verlag, 1989, pp. 120-137. [MR: 1051955]
  19. 19. P. WEIL, Product of Languages with counter, Theoret. Comp. Sci., 1990, 76, pp. 251-260. [MR: 1079529] [Zbl: 0704.68071]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.