Free Access
Issue |
RAIRO-Theor. Inf. Appl.
Volume 29, Number 3, 1995
|
|
---|---|---|
Page(s) | 209 - 226 | |
DOI | https://doi.org/10.1051/ita/1995290302091 | |
Published online | 01 February 2017 |
- 1. R. CORI and D. PERRIN, Automates et commutations partielles, Informatique Théorique et Applications, 1985, 19, pp.21-32. [EuDML: 92219] [MR: 795769] [Zbl: 0601.68055] [Google Scholar]
- 2. V. DIEKERT, Combinatorics on Traces, Lecture Notes in Comp. Sci., 1987, 454, Springer-Verlag. [MR: 1075995] [Zbl: 0717.68002] [Google Scholar]
- 3. S. EILENBERG, Automata, Languages and Machines B, Academic Press, 1976. [Zbl: 0359.94067] [Google Scholar]
- 4. P. GASTIN, A. PETIT and W. ZIELONKA, An extension of Kleene's and Ochmanski's theorems to infinite traces, Theoret. Comp. Sci., 1994, 125, pp. 167-204. [MR: 1264131] [Zbl: 0795.68116] [Google Scholar]
- 5. K. KURATOWSKI and A. MOSTOWSKI, Set Theory, North Holland, 1976. [MR: 485384] [Zbl: 0337.02034] [Google Scholar]
- 6. J. D. Jr. MCKNIGHT, Kleene quotient theorems, Pacific J. of Math., 1964, 14, pp. 1343-1352. [MR: 180612] [Zbl: 0144.01201] [Google Scholar]
- 7. J. D. Jr. MCKNIGHT and A. J. STOREY, Equidivisible semigroups, J. Algebra, 1969, 12, pp.24-48. [MR: 238982] [Zbl: 0192.34504] [Google Scholar]
- 8. G. LALLEMENT, Semigroups and Combinatorial Applications, John Wiley and Sons, 1979. [MR: 530552] [Zbl: 0421.20025] [Google Scholar]
- 9. F. W. LEVI, On semigroups, Bull. Calcutta Math. Soc., 1944, 36, pp. 141-146. [MR: 11694] [Zbl: 0061.02405] [Google Scholar]
- 10. L. PETRONE and M. P. SCHÜTZENBERGER, Sur un problème de McNaughton, Report, CETTS-EURATOM, 1963. [Google Scholar]
- 11. J. E. PIN, Hiérarchies de concaténation, RAIRO Informatique Théorique, 1984, 18, pp. 23-46. [EuDML: 92197] [MR: 750449] [Zbl: 0559.68062] [Google Scholar]
- 12. J. E. PIN, Varieties of Formal Languages, North Oxford Academic, 1986. [MR: 912694] [Zbl: 0655.68095] [Google Scholar]
- 13. C. REUTENAUER, Sur les variétés de langages et de monoïdes. In Theoretical Computer Science 4th GI Conference (Ed. K. WEIHRAUCH), Lecture Notes in Comp. Sci. 67, Springer-Verlag, 1979, pp. 260-265. [MR: 568110] [Zbl: 0411.68066] [Google Scholar]
- 14. M. P. SCHÜTZENBERGER, On finite monoids having only trivial semigroups, Information and Control, 1965, 8, pp. 190-194. [MR: 176883] [Zbl: 0131.02001] [Google Scholar]
- 15. M. P. SCHÜTZENBERGER, Sur certaines variétés de monoïdes finis, In Automata Theory, (Ed. E. R. CAIANIELLO), Academic Press, 1966, pp. 314-319. [MR: 205766] [Zbl: 0192.07901] [Google Scholar]
- 16. I. SIMON, The product of rational languages. In Automata, Languages and Programming, (Ed. A. LINGAS, R. KARLSSON and S. CARLSSON), Lecture Notes in Comp. Sci. 700, Springer-Verlag, 1993, pp. 430-444. [MR: 1252424] [Google Scholar]
- 17. H. STRAUBING, A generalization of the Schützenberger product of finite monoids, Theoret. Comp. Sci., 1981, 13, pp. 137-150. [MR: 594057] [Zbl: 0456.20048] [Google Scholar]
- 18. P. WEIL, Concatenation product: a survey. In Formal Properties of Finite Automata and Applications, (Ed. J. E. PIN), Lecture Notes in Comp. Sci. 386, Springer-Verlag, 1989, pp. 120-137. [MR: 1051955] [Google Scholar]
- 19. P. WEIL, Product of Languages with counter, Theoret. Comp. Sci., 1990, 76, pp. 251-260. [MR: 1079529] [Zbl: 0704.68071] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.