Free Access
RAIRO-Theor. Inf. Appl.
Volume 28, Number 3-4, 1994
Special issue for Professor Karel Culik II : 60 th birthday
Page(s) 187 - 199
Published online 03 February 2017
  1. 1. J. C. BERMOND, C. DELORME and J. J. QUISQUATER, Strategies for interconnection networks: some methods from graph theory, Journal of Parallel and Distributed Computing, 1986, 3, pp. 433-449. [Google Scholar]
  2. 2. J. C. BERMOND, C. PEYRAT, de BRUIJN and KAUTZ networks: a competitor for the hypercube? Hypercube and Distributed Computers, 1989, pp. 279-294. [Google Scholar]
  3. 3. J. A. BONDY and U. S. R. MURTY, Graphs Theory with Applications, North Holland, 1976. [Zbl: 1226.05083] [Google Scholar]
  4. 4. F. R. K. CHUNG, Diameters of graphs: old problems and new results, Proceedings of the 18th South-Eastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 1987, pp. 295-317. [MR: 945240] [Zbl: 0695.05029] [Google Scholar]
  5. 5. C. DELORME, A Table of Large Graphs of Small Degrees and Diameters, personal communication, 1990. [Google Scholar]
  6. 6. D. Z. DU and F. K. HWANG, Generalized de Bruijn Digraphs, Networks, 1988, 18, pp. 28-38. [MR: 926031] [Zbl: 0654.05036] [Google Scholar]
  7. 7. B. ELPAS, Topological Constrains on Interconnection Limited Logic, Switching Circuits Theory and Logical Design, 1964, 5, pp. 133-147. [Google Scholar]
  8. 8. M. IMASE and M. ITOH, Design to minimize diameter on building block network, IEEE Trans. on Computers, 1981, C-30, pp. 439-442. [MR: 626733] [Zbl: 0456.94030] [Google Scholar]
  9. 9. W. H. KAUTZ, Bounds on directed (d, k) graphs, Theory of Cellular Logic Networks and Machines, SRI Project 7258, 1968, pp. 20-28. [Google Scholar]
  10. 10. D. E. KNUTH, The art of computer programming, Seminumerical Algorithms, Addison-Wesley, II, 1972. [Zbl: 0191.18001] [MR: 378456] [Google Scholar]
  11. 11. C. C. KOUNG, Multi-dimensional Linear Congruential Network Models, Master's Thesis, Dept. of Comp. Sci. Concordia University, Montreal, 1993. [Zbl: 0804.05048] [Google Scholar]
  12. 12. W. LELAND and M. SOLOMON, Dense trivalent graphs for processor interconnection, IEEE Trans, on Computers, 1982, 31, No. 3, pp. 219-222. [MR: 648372] [Zbl: 0477.68068] [Google Scholar]
  13. 13. J. OPATRNY and D. SOTTEAU, Linear Congruential Graphs, Graph Theory, Combinatorics, Algorithms, and Applications, SIAM proceedings series, 1991, pp. 404-426. [MR: 1132923] [Zbl: 0739.05074] [Google Scholar]
  14. 14. J. OPATRNY, D. SOTTEAU, N. SRINIVASAN and K. THULASIRAMAN, DCC Linear Congruential Graphs, a New Network Model, IEEE Trans. Comput., to appear. [MR: 1376915] [Google Scholar]
  15. 15. M. R. SAMANTHAM and D. K. PRADHAM, The de Bruijn Multiprocessor Network: A Versatile Parallel Processing and Sorting Network for VLSI, IEEE Trans. Cornput., 1989,38, No. 4, pp. 567-581. [MR: 984681] [Zbl: 0671.94028] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.