Free Access
Issue |
RAIRO-Theor. Inf. Appl.
Volume 27, Number 4, 1993
|
|
---|---|---|
Page(s) | 341 - 348 | |
DOI | https://doi.org/10.1051/ita/1993270403411 | |
Published online | 01 February 2017 |
- 1. M. K. BENNET and G. BIRKHOFF, Two families of Newman lattices, to appear. [MR: 1287019] [Zbl: 0810.06006] [Google Scholar]
- 2. A. BONNIN et J. M. PALLO, A-transformation dans les arbres n-aires, Discrete Math., 45, 1983, pp. 153-163. [MR: 704232] [Zbl: 0504.68040] [Google Scholar]
- 3. C. CHAMENI-NEMBUA and B. MONJARDET, Les treillis pseudocomplémentés finis, Europ. J. Combinatorics, 13, 1992, pp.89-107. [MR: 1158803] [Zbl: 0759.06010] [Google Scholar]
- 4. W. FELLER, An introduction to probability theory and its applications, John Wiley, New-York, 1957. [MR: 88081] [Zbl: 0077.12201] [Google Scholar]
- 5. H. FRIEDMAN and D. TAMARI, Problèmes d'associativité : une structure de treillis fini induite par une loi demi-associative, J. Combinat. Theory, 2, 1967, pp. 215-242. [MR: 238984] [Zbl: 0158.01904] [Google Scholar]
- 6. G. GRÄTZER, General lattice theory, Academic Press, New-York, 1978. [MR: 509213] [Zbl: 0436.06001] [Google Scholar]
- 7. C. GREENE, The Möbius function of a partially ordered set, in: Ordered sets, I. Rival éd., D. Reidel Publishing Company, 1982, pp. 555-581. [MR: 661306] [Zbl: 0491.06004] [Google Scholar]
- 8. P. HALL, The Eulerian functions of a group, Quart. J. Math. Oxford Ser., 1936, pp. 134-151. [Zbl: 0014.10402] [JFM: 62.0082.02] [Google Scholar]
- 9. S. HUANG and D. TAMARI, Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinat, Theory, (A) 13, 1972, pp. 7-13. [MR: 306064] [Zbl: 0248.06003] [Google Scholar]
- 10. G. MARKOWSKY, The factorization and representation of lattices, Trans. Amer. Math. Soc., 203, 1975, pp. 185-200. [MR: 360386] [Zbl: 0302.06011] [Google Scholar]
- 11. J. M. PALLO, Enumeration, ranking and unranking binary trees, Computer J., 29, 1986, pp. 171-175. [MR: 841678] [Zbl: 0585.68066] [Google Scholar]
- 12. J. M. PALLO, On the rotation distance in the lattice of binary trees, Inform. Process. Lett., 25, 1987, pp. 369-373. [MR: 905781] [Google Scholar]
- 13. J. M. PALLO, Some properties of the rotation lattice of binary trees, Computer J., 31, 1988, pp. 564-565. [MR: 974656] [Zbl: 0654.06008] [Google Scholar]
- 14. J. M. PALLO, A distance metric on binary trees using lattice-theoretic measures, Inform. Process. Lett., 34, 1990, pp. 113-116. [MR: 1059974] [Zbl: 0695.68017] [Google Scholar]
- 15. D. ROELANTS van BARONAIGIEN and F. RUSKEY, A Hamilton path in the rotation lattice of binary trees, Congr. Numer., 59, 1987, pp. 313-318. [MR: 944971] [Zbl: 0647.05038] [Google Scholar]
- 16. G. C. ROTA, On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2, 1964, pp. 340-368 [MR: 174487] [Zbl: 0121.02406] [Google Scholar]
- 17. D. D. SLEATOR, R. E. TARJAN and W. P. THURSTON, Rotation distance, triangulations and hyperbolic geometry, Journal of the American Mathematical Society, 1988, pp. 647-681. [MR: 928904] [Zbl: 0653.51017] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.