Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 27, Number 4, 1993
Page(s) 295 - 310
DOI https://doi.org/10.1051/ita/1993270402951
Published online 01 February 2017
  1. 1. S. G. AKL, The Design and Analysis of Parallel Algorithms, Prentice-Hall, Englewood Cliffs, N.J., 1989. [Zbl: 0754.68053] [Google Scholar]
  2. 2. R. J. ANDERSON, E. W. MAYR and M. K. WARMUTH, Parallel approximation algorithms for bin packing, Inform. and Comput., 82, 1989, pp. 262-277. [MR: 1016684] [Zbl: 0677.90054] [Google Scholar]
  3. 3. K. E. BATCHER, Sorting networks and their applications, Proc. of AFIPS Spring Joint Computer Conf., 1968, pp. 307-314. [Google Scholar]
  4. 4. G. BILARDI and A. NICOLAU, Adaptive bitonic sorting: An optimal parallel algorithm for shared memory models, SIAM J. Comput., 18, 1989, pp. 216-228. [MR: 986662] [Zbl: 0677.68070] [Google Scholar]
  5. 5. A. BORODIN and J. E. HOPCROFT, Routing, sorting, and merging on parallel models of computation, J. Comput. System Sci., 30, 1985, pp. 130-145. [MR: 788835] [Zbl: 0603.68065] [Google Scholar]
  6. 6. R. COLE, Parallel merge sort, SIAM J. Comput., 17, 1988, pp. 770-785. [MR: 953293] [Zbl: 0651.68077] [Google Scholar]
  7. 7. E. DEKEL and I. OZSVATH, Parallel external merging, J. Parallel Distr. Comput., 6, 1989, pp. 623-635. [Google Scholar]
  8. 8. D. EPPSTEIN and Z. GALIL, Parallel algorithmic techniques for combinatorial computation, Annual Reviews in Computer Science, 3, 1988, pp. 233-283. [Zbl: 0691.68037] [MR: 1001205] [Google Scholar]
  9. 9. X. GUAN and M. A. LANGSTON, Time-space optimal parallel merging and sorting, IEEE Trans. Comput., 40, 1991, pp. 596-602. [MR: 1110897] [Google Scholar]
  10. 10. T. HAGERUP and C. RÜB, Optimal merging and sorting on the EREW PRAM, Inform. Process. Lett., 33, 1989, pp. 181-185. [MR: 1049685] [Zbl: 0689.68085] [Google Scholar]
  11. 11. B.-C. HUANG and M. A. LANGSTON, Practical in-place merging, Comm. ACM, 31, 1988, pp. 348-352. [Google Scholar]
  12. 12. B.-C. HUANG and M. A. LANGSTON, Fast stable merging and sorting in constant extra space, Proc. Internat. Conf. on Computing and Information, 1989, pp. 71-80. [Google Scholar]
  13. 13. J. JÁJÁ, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992. [Zbl: 0781.68009] [Google Scholar]
  14. 14. R. M. KARP and V. RAMACHANDRAN, A survey of parallel algorithms for shared memory machines, In J. van Leeuwen, editor, Handbook of Theoretical Computer Science. North-Holland, Amsterdam, The Netherlands, 1990. [MR: 1127183] [Zbl: 0900.68267] [Google Scholar]
  15. 15. M. A. KRONROD, An optimal ordering algorithm without a field of operation, Dokladi Akademia Nauk SSSR, 186, 1969, pp. 1256-1258. [MR: 246793] [Zbl: 0236.68017] [Google Scholar]
  16. 16. C. P. KRUSKAL, Searching, merging, and sorting in parallel computation, IEEE Trans. Comput., C-32, 1983, pp. 942-946. [MR: 761981] [Zbl: 0525.68039] [Google Scholar]
  17. 17. C. P. KRUSKAL, L. RUDOLPH and M. SNIR, A complexity theory of efficient parallel algorithms, Theoret. Comput. Sci., 71, 1990, pp. 95-132. [MR: 1050080] [Zbl: 0699.68069] [Google Scholar]
  18. 18. H. MANNILA and E. UKKONEN, A simple linear-time algorithm for in situ merging, Inform. Process. Lett., 18, 1984, pp. 203-208. [MR: 757978] [Google Scholar]
  19. 19. F. P. PREPARATA, New parallel-sorting schemes, IEEE Trans. Comput., C-27, 1978, pp. 669-673. [MR: 495166] [Zbl: 0379.68025] [Google Scholar]
  20. 20. M. J. QUINN, Designing Efficient Algorithms for Parallel Computers, North-Holland, New York, 1987. [Zbl: 0634.68020] [Google Scholar]
  21. 21. J. SALOWE and W. STEIGER, Simplified stable merging tasks, J. Algorithms, 8, 1987, pp. 557-571. [MR: 920507] [Zbl: 0641.68092] [Google Scholar]
  22. 22. B. SCHIEBER and U. VISHKIN, Finding all nearest neighbors for convex polygons in parallel: A new lower bound technique and a matching algorithm, Discrete Applied Math., 29, 1990 pp. 97-111. [MR: 1078306] [Zbl: 0707.68040] [Google Scholar]
  23. 23. J. T. SCHWARTZ, Ultracomputers, ACM Trans. Program. Lang. Syst., 2, 1980, pp. 484-521. [Zbl: 0468.68027] [Google Scholar]
  24. 24. Y. SHILOACH and U. VISHKIN, Finding the maximum, merging, and sorting in a parallel computational model, J. Algorithms, 12, 1981, pp. 88-102. [MR: 640514] [Zbl: 0456.68062] [Google Scholar]
  25. 25. M. SNIR, On parallel searching, SIAM J. Comput., 15, 1985, pp. 688-708. [MR: 795940] [Zbl: 0607.68047] [Google Scholar]
  26. 26. H. S. STONE, Parallel processing with the perfect shuffle, IEEE Trans. Comput., C-20, 1971, pp. 153-161. [Zbl: 0214.42703] [Google Scholar]
  27. 27. L. G. VALIANT, General purpose parallel architectures In J. van Leeuwen, editor, Handbook of Theoretical Computer Science. North-Holland, Amsterdam, The Netherlands, 1990. [MR: 1127184] [Zbl: 0900.68257] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.