Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 26, Number 6, 1992
Page(s) 553 - 564
DOI https://doi.org/10.1051/ita/1992260605531
Published online 01 February 2017
  1. 1. J. A. BRZOZOWSKI et R. KNAST, The Dot-Depth Hierarchy of Star-Free Languages is Infinite, J. Computer and System Sci., 1978, 16, p. 35-55. [MR: 471451] [Zbl: 0368.68074] [Google Scholar]
  2. 2. S. EILENBERG, Automata, Languages and Machines, Academic Press, 1976, B. [Zbl: 0359.94067] [Google Scholar]
  3. 3. E. LUCA, La Théorie des nombres, tome 1, 1961. [Google Scholar]
  4. 4. P. PÉLADEAU, Classes de circuits booléens et variétés de langages, Thèse de Doctorat, Université Paris-VI, 1990. [Google Scholar]
  5. 5. J. E. PIN, Variétés de langage formels, Masson, Paris, 1984. [MR: 752695] [Zbl: 0636.68093] [Google Scholar]
  6. 6. J.-E. PIN, Topologies for the Free Monoid, Rapport LITP 88.17, J. of Algebra (à paraître). [Zbl: 0739.20032] [Google Scholar]
  7. 7. M. P. SCHÜTZENBERGER, On Finite Monoids Having Only Trivial Subgroups, Inform. and Control, 1965, 8, p. 190-194. [MR: 176883] [Zbl: 0131.02001] [Google Scholar]
  8. 8. R. SMOLENSKY, Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity, Proc. 19th ACM STOC, 1987, p. 77-82. [Google Scholar]
  9. 9. H. STRAUBING, Families of Recognizable Sets Corresponding to Certain Varieties of Finite Monoids, J. Pure Appl. Algebra, 1979, 15, p. 319-327. [MR: 537504] [Zbl: 0414.20056] [Google Scholar]
  10. 10. H. STRAUBING, A Generalization of the Schützenberger Product of Finite Monoids, Theoret. Comput. Sci., 1981, 13, p. 137-150. [MR: 594057] [Zbl: 0456.20048] [Google Scholar]
  11. 11. H. STRAUBING, D. THÉRIEN and W. THOMAS, Regular Languages Defined with Generalized Quantifiers, Automata, Languages and Programming; Proc. 15th ICALP, Springer, Lectures Notes in Comput. Sci., 1988. [MR: 1023662] [Zbl: 0658.68098] [Google Scholar]
  12. 12. D. THÉRIEN, Classification of Regular Languages by Congruences, Ph. D. Thesis, Univ. of Waterloo, 1980. [Google Scholar]
  13. 13. D. THÉRIEN, Classification of Finite Monoids: the Language Approach, Theoret. Comput. Sci., 1981, 14, p. 195-208. [MR: 614416] [Zbl: 0471.20055] [Google Scholar]
  14. 14. P. WEIL, Products of Languages with Counter, Theoret. Comput. Sci., 1990, 76, p. 251-260. [MR: 1079529] [Zbl: 0704.68071] [Google Scholar]
  15. 15. P. WEIL, Closure of Varieties of Languages Under Products with Counter, Rapport LITP, p. 89-129. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.