Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 26, Number 6, 1992
Page(s) 553 - 564
DOI https://doi.org/10.1051/ita/1992260605531
Published online 01 February 2017
  1. 1. J. A. BRZOZOWSKI et R. KNAST, The Dot-Depth Hierarchy of Star-Free Languages is Infinite, J. Computer and System Sci., 1978, 16, p. 35-55. [MR: 471451] [Zbl: 0368.68074]
  2. 2. S. EILENBERG, Automata, Languages and Machines, Academic Press, 1976, B. [Zbl: 0359.94067]
  3. 3. E. LUCA, La Théorie des nombres, tome 1, 1961.
  4. 4. P. PÉLADEAU, Classes de circuits booléens et variétés de langages, Thèse de Doctorat, Université Paris-VI, 1990.
  5. 5. J. E. PIN, Variétés de langage formels, Masson, Paris, 1984. [MR: 752695] [Zbl: 0636.68093]
  6. 6. J.-E. PIN, Topologies for the Free Monoid, Rapport LITP 88.17, J. of Algebra (à paraître). [Zbl: 0739.20032]
  7. 7. M. P. SCHÜTZENBERGER, On Finite Monoids Having Only Trivial Subgroups, Inform. and Control, 1965, 8, p. 190-194. [MR: 176883] [Zbl: 0131.02001]
  8. 8. R. SMOLENSKY, Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity, Proc. 19th ACM STOC, 1987, p. 77-82.
  9. 9. H. STRAUBING, Families of Recognizable Sets Corresponding to Certain Varieties of Finite Monoids, J. Pure Appl. Algebra, 1979, 15, p. 319-327. [MR: 537504] [Zbl: 0414.20056]
  10. 10. H. STRAUBING, A Generalization of the Schützenberger Product of Finite Monoids, Theoret. Comput. Sci., 1981, 13, p. 137-150. [MR: 594057] [Zbl: 0456.20048]
  11. 11. H. STRAUBING, D. THÉRIEN and W. THOMAS, Regular Languages Defined with Generalized Quantifiers, Automata, Languages and Programming; Proc. 15th ICALP, Springer, Lectures Notes in Comput. Sci., 1988. [MR: 1023662] [Zbl: 0658.68098]
  12. 12. D. THÉRIEN, Classification of Regular Languages by Congruences, Ph. D. Thesis, Univ. of Waterloo, 1980.
  13. 13. D. THÉRIEN, Classification of Finite Monoids: the Language Approach, Theoret. Comput. Sci., 1981, 14, p. 195-208. [MR: 614416] [Zbl: 0471.20055]
  14. 14. P. WEIL, Products of Languages with Counter, Theoret. Comput. Sci., 1990, 76, p. 251-260. [MR: 1079529] [Zbl: 0704.68071]
  15. 15. P. WEIL, Closure of Varieties of Languages Under Products with Counter, Rapport LITP, p. 89-129.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.