Free Access
RAIRO-Theor. Inf. Appl.
Volume 26, Number 5, 1992
Page(s) 403 - 424
Published online 01 February 2017
  1. [AH87] S. ABRAMSKY and C. L. HANKIN, eds, Abstract Interpretation of Declarative Languages, Ellis-Horwood, 1987. [Google Scholar]
  2. [BHA86] G. L. BURN, C. L. HANKIN and S. ABRAMSKY, The Theory of Strictness Analysis for Higher Order Functions, Sci. Comput. Programming, 1986, 7, pp. 249-278. [MR: 867677] [Zbl: 0603.68013] [Google Scholar]
  3. [BW85] M. BARR and C. WELLS, Toposes, Triples and Theories, Springer Verlag, 1985. [MR: 771116] [Zbl: 0567.18001] [Google Scholar]
  4. [CC77a] P. COUSOT and R. COUSOT, Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximaion of Fixpoints. In 4th P.O.P.L., 1977, pp. 238-252. [Google Scholar]
  5. [CC77b] P. COUSOT and R. COUSOT, Automatic Synthesis of Optimal Invariant Assertions: Mathematical Foundations. A.C.M. Sigplan Notices, 1977, 12, pp. 1-12. [Google Scholar]
  6. [CC79] P. COUSOT and R. COUSOT, Systematic Design of Program Analysis Framework. In 6th P.O.P.L., 1979, pp. 269-282. [Google Scholar]
  7. [HJ88] C. A. R. HOARE and H. JIFENG, Data Refinement in a Categorical Setting. Technical Report, Oxford Univ. Computing Lab., February 1988. [Google Scholar]
  8. [Jay90a] C. B. JAY, Extending Properties to Categories of Partial Maps. Tech. Rep. E.C.S.-L.F.C.S.-90-l07, University of Edinburgh, 1990. [Google Scholar]
  9. [Jay90e] C. B. JAY, Partial Functions, Ordered Categories, Limits and Cartesian Closure. In: G. BIRTWISTLE (ed.) IV Higher Order Workshop, Banff, 1990, Springer, 1991. [Google Scholar]
  10. [Jay91] C. B. JAY, Modelling Reduction in Confluent Categories. Tech. Rep. E.C.S.-L.F.C.S.-91-187, University of Edinburgh, 1991. [MR: 1176962] [Google Scholar]
  11. [JN90] N. D. JONES and F. NIELSON, Abstract Interpretation: A Semantics Based Tool for Program Analysis. In Handbook of Logic in Computer Science. [Google Scholar]
  12. [KS74] G. M. KELLY and R. STREET, Review of the Elements of 2-Categories. In G. M. KELLY, ed., Proceedings Sydney Category Theory Seminar 1972/1973, Springer-Verlag, 1974, pp.75-103. [MR: 357542] [Zbl: 0334.18016] [Google Scholar]
  13. [LS86] J. LAMBECK and P. J. SCOTT, Introduction to Higher-Order Categorical Logic, vol. 7 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986. [MR: 856915] [Zbl: 0596.03002] [Google Scholar]
  14. [Mac71] S. MACLANE, Categories for the Working Mathematician. Springer Verlag, 1971. [MR: 354798] [Zbl: 0232.18001] [Google Scholar]
  15. [MJ86] A. MYCROFT and N. D. JONES, A Relational Framework for Abstract Interpretation. In Proceedings, 'Programs as Data Objects'. Springer Verlag, L.N.C.S. 217, 1986. [MR: 846663] [Zbl: 0585.68032] [Google Scholar]
  16. [Nie86] F. NIELSON, A Bibliography on Abstract Interpretations. A.C.M. Sigplan Notices, 1986, 21, pp.31-38. [Google Scholar]
  17. [Plo80] G. D. PLOTKIN, Lambda Defmability in the Full Type Hierarchy. In R. HINDLEY and J. SELDIN, eds., To H.B. Curry: Essays in Combinatory Logic, Lambda Calculas and Formalisms. Academic Press, 1980. [MR: 592811] [Google Scholar]
  18. [SP82] M. SMITH and G. PLOTKIN, The Category-theoretic Solution of Recursive Domain Equations. S.I.A.M. J. Comput., 1982, 11. [MR: 677666] [Zbl: 0493.68022] [Google Scholar]
  19. [Ste87] B. STEFFEN, Optimal Run Time Optimization - Proved by a New Look at Abstract Interpretations. In T.A.P.S.O.F.T.'87, L.N.C.S. 249, 1987, pp. 52-68. [Zbl: 0614.68012] [Google Scholar]
  20. [Ste89] B. STEFFEN, Optimal Data Flow Analysis via Observable Equivalence. In M.F.C.S.'89, 1989. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.