Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 26, Number 5, 1992
Page(s) 387 - 402
DOI https://doi.org/10.1051/ita/1992260503871
Published online 01 February 2017
  1. 1. P. AGARWAL, Intersection and decomposition algorithms for arrangements of curves in the plane. Ph. D., New York University, Courant Institute of Mathematical Sciences, 1989. [MR: 2638381]
  2. 2. P. AGARWAL, M. SHARIR and P. SHOR, Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences. J. Combinat. Theory Ser. A, 52, (2) : 228-274, 1989. [MR: 1022320] [Zbl: 0697.05003]
  3. 3. P. ALEVIZOS, J. D. BOISSONNAT and F. PREPARATA, An optimal algorithm for the boundary of a cell in a union of rays. Algorithmica, 5, (4) : 573-590, 1990. [MR: 1072808] [Zbl: 0697.68030]
  4. 4. R. COLE and M. SHARIR, Visibility of a polyhedral surface from a point. Technical Report 266, Comp. Science Dept., Courant Institute of Mathematical Sciences, New York University, December 1986.
  5. 5. H. DAVENPORT, A combinatorial problem connected with differential equations II. Acta Arithmetica, XVII : 363-372, 1971. [EuDML: 204964] [MR: 285401] [Zbl: 0216.30204]
  6. 6. H. DAVENPORT and A. SCHINZEL, A combinatorial problem connected with differential equations. Amer. J. Math., 87 : 684-694, 1965. [MR: 190010] [Zbl: 0132.00601]
  7. 7. P. FLAJOLET, Analytic models and ambiguity of context-free languages. Theoretical Computer Science, 49, (2) : 283-310, 1987. [MR: 909335] [Zbl: 0612.68069]
  8. 8. P. FLAJOLET and A. ODLYZKO, Singularity analysis of generating fonctions. SIAM Journal on Discrete Mathematics, 3, (2) : 216-240, 1990. [MR: 1039294] [Zbl: 0712.05004]
  9. 9. D. GOUYOU-BEAUCHAMPS and B. VAUQUELIN, Deux propriétés combinatoires des nombres of Schröder. Informatique Théorique et Applications, 22, (3) : 361-388, 1988. [EuDML: 92313] [MR: 963597] [Zbl: 0669.05002]
  10. 10. S. HART and M. SHARIR, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes. Combinatorica, 6 : 151-177, 1986. [MR: 875839] [Zbl: 0636.05003]
  11. 11. K. KEDEM and M. SHARIR, An efficient algorithm for planning collision-free translational motion of a convex polygonal object in 2-dimensional space amidst polygonal obstacles. In ACM Symp. on Computational Geometry, pp. 75-8, 1985.
  12. 12. P. KOMJÁTH, A simplified construction of nonlinear Davenport-Schinzel sequences. J. Combin. Theory Ser. A, 49, (2) : 262-267, 1988. [MR: 964387] [Zbl: 0673.05001]
  13. 13. D. LEVEN and M. SHARIR, On the number of critical free contacts of a convex polygonal object moving in 2-dimensional polygonal space. Discrete Comp. Geom., 2 : 255-270, 1987. [EuDML: 131022] [MR: 892172] [Zbl: 0616.52009]
  14. 14. J. PACH and M. SHARIR, The upper envelope of a piecewise linear function and the boundary of a region enclosed by convex plates: Combinatorial Analysis. Discrete Comp. Geom., 4, (4) : 291-309, 1989. [EuDML: 131081] [MR: 996764] [Zbl: 0734.05054]
  15. 15. R. POLLACK, M. SHARIR and S. SIFRONY, Separating two simple polygons by a sequence of translations. Discrete Comp. Geom., 3 : 123-136, 1988. [EuDML: 131041] [MR: 920698] [Zbl: 0646.68052]
  16. 16. M. SHARIR, Almost linear upper bounds on the length of general Davenport-Schinzel sequences. Combinatorica, 7, (1) : 131-143, 1987. [MR: 905160] [Zbl: 0636.05004]
  17. 17. M. SHARIR, Davenport-Schinzel sequences and their geometric applications, chapter Theoretical Foundations of Computer Graphics and CAD, pp. 253-278. Springer-Verlag, NATO ASI Series, Vol. F-40, R.A. Earnshaw edition, 1988. [MR: 944720]
  18. 18. M. SHARIR, R. COLE, K. KEDEM, D. LEVEN, R. POLLACK and S. SIFRONY, Geometric applications of Davenport-Schinzel sequences. In 27th Symposium on Foundations of Computer Science, pp.77-86, Toronto (Canada), 1986.
  19. 19. M. SORIA, Méthodes d'analyse pour les constructions combinatoires et les algorithmes. Thèse d'État, L.R.I, Université Paris-Sud (Orsay), Juillet 1990.
  20. 20. E. SZEMERÉDI, On a problem by Davenport and Schinzel. Acta Arithmetica XXV: 213-224, 1974. [EuDML: 205268] [MR: 335463] [Zbl: 0291.05003]
  21. 21. A. WIERNIK, Planar realizations of nonlinear Davenport-Schinzel sequences by segments. In 27th Symposium on Foundations of Computer Science, pp.97-106, Toronto (Canada), 1986.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.