Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 26, Number 3, 1992
Page(s) 199 - 204
DOI https://doi.org/10.1051/ita/1992260301991
Published online 01 February 2017
  1. 1. J. BERSTEL, Mots de Fibonacci, Séminaire d'informatique théorique, L.I.T.P., Paris, Année 1980/198, pp. 57-78.
  2. 2. A. DE LUCA, A combinatorial property of the Fibonacci words, Inform. Process. Lett., 1981, 12, n. 4, pp. 193-195. [Zbl: 0468.20049]
  3. 3. F. DEJEAN, Sur un théorème de Thue, J. Comb. Theory, Ser. A, 1972, 13, pp. 90-99. [Zbl: 0245.20052]
  4. 4. J. KARHUMÄKI, On cube-free ω-words generated by binary morphism, Discr. Appl. Math., 1983, 5, pp. 279-297. [Zbl: 0505.03022]
  5. 5. G. H. HARDY and E. M WRIGHT, An Introduction to the theory of Numbers, Oxford University Press, Fifth edition, 1983. [Zbl: 0020.29201] [MR: 568909]
  6. 6. LOTHAIRE, Combinatorics on words, Addison Wesley, 1983. [MR: 675953] [Zbl: 0514.20045]
  7. 7. A. RESTIVO and S. SALEMI, Overlap-free words on two symbols, Lecture Notes in Compt. Sci., 1984, 192, pp. 198-206. [MR: 814744] [Zbl: 0572.20038]
  8. 8. P. SÉÉBOLD, Propriétés combinatoires des mots infinis engendrés par certains morphismes, Thèse de doctorat, Rapp. Tec. L.I.T.P., 85-14 1985.
  9. 9. A. THUE, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat.-Nat. Kl., Christiana 1906, Nr. 7. pp. 1-22. [JFM: 37.0066.17]
  10. 10. A. THUE, Über die gegenseitige Lege gleicher Teile gewisser Zeichenrein, Norske Vid. Selsk. Skr. I. Mat.-Nat. Kl., Christiana 1912, Nr. 1, pp. 1-67. [JFM: 44.0462.01]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.