Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 24, Number 2, 1990
Page(s) 161 - 188
DOI https://doi.org/10.1051/ita/1990240201611
Published online 01 February 2017
  1. 1. D. S. ARNON, G. E. COLLINS et S. MCCALLUM, Cylindrical Algebraic Decomposition I and II: the Basic Algorithm, Siam J. Comput., vol. 13, n° 4, nov. 84, p.865-889. [Zbl: 0562.14001] [MR: 764184] [Google Scholar]
  2. 2. D. S. ARNON, Towards Mechanical Solution of Kahan Ellipse Problem I, Computer Algebra, Lectures Notes, 162, Springer-Verlag, 1983. [MR: 774802] [Zbl: 0553.68031] [Google Scholar]
  3. 3. D. S. ARNON, On Mechanical Quantifier Elimination For Elementary. Algebra and Geometry: Solution of a non Trivial Problem, Eurocal 85, Lectures Notes 204, p. 270-271, Springer-Verlag, 1985. [Google Scholar]
  4. 4. D. S. ARNON et M. MIGNOTTE, On Mechanical Quantifier Elimination For Elementary Algebra and Geometry, J. Symbolic Computation, Vol. 5, 1988, p. 237-259. [MR: 949121] [Zbl: 0644.68051] [Google Scholar]
  5. 5. J. BOCHNAK et M. COSTE, M.-F. ROY, Géométrie Algébrique Réelle, Ergebnisse der Mathematik, Springer-Verlag, 1987. [MR: 949442] [Zbl: 0633.14016] [Google Scholar]
  6. 6. W. S. BROWN et J.-F. TRAUB, On Euclid's Algorithm and the Theory of Subresultants, J. Assoc. Comput. Math., vol. 18, n° 4, 1971, p. 505-514. [MR: 303684] [Zbl: 0226.65041] [Google Scholar]
  7. 7. G. E. COLLINS, Quantifier Elimination for Real Closed Fields: a Guide to the Litterature, Computer Algebra Symbolic and Algebraic Computation, Springer-Verlag, 1982-1983. [MR: 728966] [Zbl: 0495.03016] [Google Scholar]
  8. 8. G. E. COLLINSet R. LOOS, Real Zeros of Polynomials, Computer Algebra Symbolic and Algebraic Computation, Springer-Verlag, 1982-1983. [MR: 728967] [Zbl: 0533.68038] [Google Scholar]
  9. 9. HÖRMANDER, The Analysis of Linear Partiel Differential Operators, tome 2, Springer-Verlag, 1983. [Zbl: 0521.35002] [Google Scholar]
  10. 10. N. JACOBSON, Basic Algebra I, San Francisco, Freeman, 1974. [MR: 356989] [Zbl: 0284.16001] [Google Scholar]
  11. 11. W. KAHAN, « Problem=9: an Ellipse Problem », SIGSAM Bulletin of the Assoc. Comp. Math., vol. 9, 1975, p. 11. [Google Scholar]
  12. 12. M. LAUER, A solution to Kahan's problem (SIGSAM problem n° 9); SIGSAM Bulletin of the Ass. Com. Math., vol. 11, 1977, p. 16-20. [Zbl: 0401.51010] [Google Scholar]
  13. 13. D. LAZARD, Quantifier Elimination: Optimal Solution for 2 Classical Examples, J. Symbolic Computation, vol. 5, 1988, p. 261-266. [MR: 949122] [Zbl: 0647.03023] [Google Scholar]
  14. 14. R. LOOS, Generalized Polynomial Remainder Sequences, Computer Algebra Symbolic and Algebraic Commutation, Springer-Verlag, 1982-1983. [MR: 728969] [Zbl: 0577.13001] [Google Scholar]
  15. 15. R. LOOS, Computing in Algebraic Extensions, Computer Algebra Symbolic and Algebraic Computation, Springer-Verlag, 1982-1983. [MR: 728972] [Zbl: 0576.12001] [Google Scholar]
  16. 16. M. MIGNOTTE, Solution au problème de Kahan (non publié). [Google Scholar]
  17. 17. A. PAUGAM, Comparaison entre 3 algorithmes d'élimination des quantificateurs sur les corps réels clos, Thèse, 1986. [Google Scholar]
  18. 18. A. SEIDENBERG, A New Decision Method for Elementary Algebra, Ann. of Math. 60, 1954, p, 365-374. [MR: 63994] [Zbl: 0056.01804] [Google Scholar]
  19. 19. A. TARSKI, A Decision Method for Elementary Algebra and Geometry, Prepared for publication by J. C. C. MacKinsey, Berkeley, 1951. [Zbl: 0044.25102] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.