Free Access
RAIRO-Theor. Inf. Appl.
Volume 24, Number 2, 1990
Page(s) 189 - 202
Published online 01 February 2017
  1. 1. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974. [MR: 413592] [Zbl: 0326.68005] [Google Scholar]
  2. 2. N. BLUM, On the Single Operation Worst-case Time Complexity of the Disjoint Set Union problem, Proc. 2nd Symp. on Theoretical Aspects of Computer Science, 1985. [MR: 786866] [Zbl: 0568.68055] [Google Scholar]
  3. 3. B. BOLLOBAS and I. SIMON, On the Expected Behavior of Disjoint Set Union Algorithms, Proc. 17th ACM Symp. on Theory of Computing, 1985. [Google Scholar]
  4. 4. J. R. DRISCOLL, N. SARNAK, D. D. SLEATOR and R. E. TARJAN, Making Data Structures Persistent, Proc. 18th Symp. on Theory of Computing STOC, 1986. [Zbl: 0667.68026] [Google Scholar]
  5. 5. M. J. FISCHER, Efficiency of Equivalence Algorithms, in Complexity of Computations, R. E. MILLER and J. W. THATCHER Eds., Plenum Press, New York, 1972. [MR: 395316] [Google Scholar]
  6. 6. H. N. GABOW and R. E. TARJAN, A Linear Time Algorithm for a Special case of Disjoint Set Union, Proc. 15th A.C.M. Symp. on Theory of Computing 1983. [Zbl: 0572.68058] [Google Scholar]
  7. 7. B. A. GALLER and M. J. FISCHER, An Improved Equivalence Algorithm, Comm. ACM 7, 1964. [Zbl: 0129.10302] [Google Scholar]
  8. 8. G. GAMBOSI, G. F. ITALIANO and M. TALAMO, Worst-Case Analysis of the Set Union Problem with Backtracking, to appear on "Theoretical Computer Science", 1989. [Zbl: 0678.68035] [Google Scholar]
  9. 9. J. E. HOPCROFT and J. D. ULLMAN, Set Merging Algorithms, S.I.A.M. J. Comput., 2, 1973. [MR: 329310] [Zbl: 0253.68003] [Google Scholar]
  10. 10. H. MANNILA and E. UKKONEN, The Set Union Problem with Backtracking, Proc. 13th I.C.A.L.P., 1986. [MR: 864686] [Zbl: 0596.68039] [Google Scholar]
  11. 11. R. E. TARJAN, Efficiency of a Good but not Linear Disjoint Set Union Algorithm, J. A.C.M., 22, 1975. [MR: 458996] [Zbl: 0307.68029] [Google Scholar]
  12. 12. R. E. TARJAN, A Class of Algorithms which Require Linear Time to Mantain Disjoint Sets, J. Computer and System Sciences, 18, 1979. [MR: 532171] [Zbl: 0413.68039] [Google Scholar]
  13. 13. R. E. TARJAN, Amortized Computational Complexity, S.I.A.M. J. Alg. Discr. Meth., 6, 1985. [MR: 778012] [Zbl: 0599.68046] [Google Scholar]
  14. 14. R. E. TARJAN and J. VAN LEEUWEN, Worst-Case Analysis of Set Union Algorithms, J. A.C.M. 31, 1984. [MR: 819138] [Zbl: 0632.68043] [Google Scholar]
  15. 15. J. VAN LEEUWEN and T. VAN DER WEIDE, Alternative Path Compression Techniques, Techn. Rep. RUU-CS-77-3, Rijksuniversiteit Utrecht, The Netherlands. [Google Scholar]
  16. 16. J. WESTBROOK and R. E. TARJAN, Amortized Analysis of Algorithms for Set-Union with Backtracking, Tech. Rep. TR-103-87, Dept. of Computer Science, Princeton University, 1987. [Zbl: 0679.68039] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.