Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 24, Number 2, 1990
Page(s) 189 - 202
DOI https://doi.org/10.1051/ita/1990240201891
Published online 01 February 2017
  1. 1. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974. [MR: 413592] [Zbl: 0326.68005]
  2. 2. N. BLUM, On the Single Operation Worst-case Time Complexity of the Disjoint Set Union problem, Proc. 2nd Symp. on Theoretical Aspects of Computer Science, 1985. [MR: 786866] [Zbl: 0568.68055]
  3. 3. B. BOLLOBAS and I. SIMON, On the Expected Behavior of Disjoint Set Union Algorithms, Proc. 17th ACM Symp. on Theory of Computing, 1985.
  4. 4. J. R. DRISCOLL, N. SARNAK, D. D. SLEATOR and R. E. TARJAN, Making Data Structures Persistent, Proc. 18th Symp. on Theory of Computing STOC, 1986. [Zbl: 0667.68026]
  5. 5. M. J. FISCHER, Efficiency of Equivalence Algorithms, in Complexity of Computations, R. E. MILLER and J. W. THATCHER Eds., Plenum Press, New York, 1972. [MR: 395316]
  6. 6. H. N. GABOW and R. E. TARJAN, A Linear Time Algorithm for a Special case of Disjoint Set Union, Proc. 15th A.C.M. Symp. on Theory of Computing 1983. [Zbl: 0572.68058]
  7. 7. B. A. GALLER and M. J. FISCHER, An Improved Equivalence Algorithm, Comm. ACM 7, 1964. [Zbl: 0129.10302]
  8. 8. G. GAMBOSI, G. F. ITALIANO and M. TALAMO, Worst-Case Analysis of the Set Union Problem with Backtracking, to appear on "Theoretical Computer Science", 1989. [Zbl: 0678.68035]
  9. 9. J. E. HOPCROFT and J. D. ULLMAN, Set Merging Algorithms, S.I.A.M. J. Comput., 2, 1973. [MR: 329310] [Zbl: 0253.68003]
  10. 10. H. MANNILA and E. UKKONEN, The Set Union Problem with Backtracking, Proc. 13th I.C.A.L.P., 1986. [MR: 864686] [Zbl: 0596.68039]
  11. 11. R. E. TARJAN, Efficiency of a Good but not Linear Disjoint Set Union Algorithm, J. A.C.M., 22, 1975. [MR: 458996] [Zbl: 0307.68029]
  12. 12. R. E. TARJAN, A Class of Algorithms which Require Linear Time to Mantain Disjoint Sets, J. Computer and System Sciences, 18, 1979. [MR: 532171] [Zbl: 0413.68039]
  13. 13. R. E. TARJAN, Amortized Computational Complexity, S.I.A.M. J. Alg. Discr. Meth., 6, 1985. [MR: 778012] [Zbl: 0599.68046]
  14. 14. R. E. TARJAN and J. VAN LEEUWEN, Worst-Case Analysis of Set Union Algorithms, J. A.C.M. 31, 1984. [MR: 819138] [Zbl: 0632.68043]
  15. 15. J. VAN LEEUWEN and T. VAN DER WEIDE, Alternative Path Compression Techniques, Techn. Rep. RUU-CS-77-3, Rijksuniversiteit Utrecht, The Netherlands.
  16. 16. J. WESTBROOK and R. E. TARJAN, Amortized Analysis of Algorithms for Set-Union with Backtracking, Tech. Rep. TR-103-87, Dept. of Computer Science, Princeton University, 1987. [Zbl: 0679.68039]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.