Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 23, Number 1, 1989
STACS 88
Page(s) 29 - 43
DOI https://doi.org/10.1051/ita/1989230100291
Published online 03 February 2017
  1. 1. A. CLIFFORD and G. PRESTON, The Algebraic Theory of Semigroups, Amer. Math. Soc., Vol. I, 1961; Vol. II, 1967. [Zbl: 0111.03403] [Google Scholar]
  2. 2. V. DIEKERT, Investigations on Hotz Groups for Arbitrary grammars, Acta Informatica, Vol. 22, 1986, pp. 679-698. [MR: 836387] [Zbl: 0612.68067] [Google Scholar]
  3. 3. V. DIEKERT, On some variants of the Ehrenfeucht Conjecture, Theoret. Comp. Sci., Vol. 46, 1986, pp. 313-318. [MR: 869212] [Zbl: 0617.68067] [Google Scholar]
  4. 4. C. FROUGNY, J. SAKAROVITCH and E. VALKEMA On the Hotz Group of a Contextfree Grammar, Acta Informatica, Vol. 18, 1982, pp. 109-115. [MR: 688347] [Zbl: 0495.68066] [Google Scholar]
  5. 5. G. HOTZ, Eine neue Invariante für Kontext-freie Sprachen, Theoret. Comp. Sci, Vol. 11, 1980, pp. 107-116. [MR: 566697] [Zbl: 0447.68089] [Google Scholar]
  6. 6. J. E. HOPCROFT and J. D. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Massachusetts, 1979. [MR: 645539] [Zbl: 0426.68001] [Google Scholar]
  7. 7. M. JANTZEN and M. KUDLEK, Homomorphic Images of Sentential Form Languages Defined by Semi-Thue System, Theoret. Comp. Sci., Vol. 33, 1984, pp. 13-43. [MR: 774218] [Zbl: 0542.68059] [Google Scholar]
  8. 8. A. MÖBUS, On Languages with a Hotz-isomorphism, Manuscript, 1986. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.