Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 23, Number 1, 1989
STACS 88
Page(s) 5 - 28
DOI https://doi.org/10.1051/ita/1989230100051
Published online 03 February 2017
  1. 1. F. AVNAIM and J. D. BOISSONNAT, Simultaneous Containment of Several Polygons, 3rd ACM Symp. on Computational Geometry, Waterloo, June 1987. [Google Scholar]
  2. 2. F. AVNAIM, J. D. BOISSONNAT and B. FAVERJON, A Practical Exact Motion Planning Algorithm for Polygonal Objects Amidst Polygonal Obstacles, I.E.E.E. Conf. on Robotics and Automation, Philadelphia, 1988. [Google Scholar]
  3. 3. A. ALBANO and G. SAPUPPO, Optimal Allocation of Two-Dimensional Irregular Shapes Using Heuristic Search Methods, I.E.E.E. Trans. on Systems, Man and Cybern., Vol. SMC-10, No. 5, May 1980. [Google Scholar]
  4. 4. B. S. BAKER, S. J. FORTUNE and S. R. MAHANEY, Inspection by Polygon Containment, 22th Allerton Annual Conf. on Communications, Control and Computing, 1984, pp. 91-100. [Google Scholar]
  5. 5. M. BERGER, Géométrie, Formes quadratiques, coniques et quadriques, CEDIC/Fernand Nathan, Vol. 4, 1978. [Zbl: 0423.51002] [Google Scholar]
  6. 6. B. CHAZELLE, The polygon containment problem, in Advances in computer research, Vol. 1, F. P. Preparata, ed., J. A. Press, pp. 1-32. [Google Scholar]
  7. 7. S. J. FORTUNE, Fast Algorithms for Polygon Containment, Automata, Languages and Programming, in Lecture Notes in Computer Science, 194, Springer Verlag, pp. 189-198. [MR: 819254] [Zbl: 0571.68029] [Google Scholar]
  8. 8. L. GUIBAS, L. RAMSHAW and G. STOLFI, A Kinematic Framework for Computational Geometry, Proc. I.E.E.E. Symp. on Foundations of Comput. Sci., 1983, pp. 74-123. [Zbl: 0586.68059] [Google Scholar]
  9. 9. K. KEDEM and M. SHARIR, An Efficient Motion Planning Algorithm for a Convex Polygonal Object in 2-dimensional Polygonal Space, Tech. Rept. No. 253, Comp. Sci. Dept., Courant Institute, Oct. 1986. [Zbl: 0688.68039] [Google Scholar]
  10. 10. D. LEVEN and M. SHARIR, On the Number of Critical free Contacts of a Convex Polygonal Object Moving in 2-D Polygonal Space, Discrete and Computational Geometry, Vol. 2, No. 3, 1987. [EuDML: 131022] [MR: 892172] [Zbl: 0616.52009] [Google Scholar]
  11. 11. T. OTTMAN, P. WIDMAYER and D. WOOD, A fast Algorithm for Boolean Mask Operations, Computer Vision, Graphics and Image Processing, Vol. 30, 1985, pp. 249-268. [Zbl: 0622.68045] [Google Scholar]
  12. 12. F. P. PREPARATA and M. I. SHAMOS, Computational Geometry: an Introduction, Springer Verlag, 1985. [MR: 805539] [Zbl: 0759.68037] [Google Scholar]
  13. 13. J. T. SCHWARTZ and M. SHARIR, On the Piano Mover's Problem I. The Case of a two Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 345-398. [MR: 697469] [Zbl: 0554.51007] [Google Scholar]
  14. 14. S. SIFRONY and M. SHARIR, A New Efficient Motion Planning Algorithm for a Rod in Two-Dimensional Polygonal Space, Algorithmica, Vol. 2, 1987, pp. 367-402. [MR: 918360] [Zbl: 0643.68049] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.