Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 22, Number 1, 1988
Page(s) 93 - 111
DOI https://doi.org/10.1051/ita/1988220100931
Published online 01 February 2017
  1. 1. S. I. ADJAN, The Burnside Problem and Identities in Groups; Springer, Berlin-Heidelberg-New York, 1979. [MR: 537580] [Zbl: 0417.20001] [Google Scholar]
  2. 2. J. AVENHAUS, R. V. BOOK and C. SQUIER, On Expressing Commutativity by Finite Church-Rosser Presentations: a Note on Commutative Monoids, R.A.I.R.O. Inf. théorique, Vol. 18, 1984, pp. 47-52. [EuDML: 92199] [MR: 750450] [Zbl: 0542.20038] [Google Scholar]
  3. 3. J. AVENHAUS, K. MADLENER and F. OTTO, Groups presented by Finite Two-Monadic Church-Rosser Thue Systems, Trans. Amer. Math. Soc., Vol. 297, 1986, pp. 427-443. [MR: 854076] [Zbl: 0604.20034] [Google Scholar]
  4. 4. J. BERSTEL, Congruences plus que parfaites et langages algébriques, Séminaire d'Informatique Théorique, Institut de Programmation, 1976-1977, pp. 123-147. [Google Scholar]
  5. 5. R. V BOOK, Confluent and Other Types of Thue Systems, J. Assoc. Comput. Mach., Vol. 29, 1982, pp. 171-182. [MR: 662617] [Zbl: 0478.68032] [Google Scholar]
  6. 6. R. V BOOK, Decidable Sentences of Church-Rosser Congruences, Theoret. Comput. Sci., Vol. 24, 1983, pp. 301-312. [MR: 716826] [Zbl: 0525.68015] [Google Scholar]
  7. 7. R. V BOOK, Thue Systems and the Church-Rosser Property: Replacement Systems, Specification of Formal Languages and Presentations of Monoids, in L. CUMMINGS Ed.; Combinatorics on Words: Progress and Perspectives, Academic Press, 1983, pp. 1-38. [MR: 910127] [Zbl: 0563.68062] [Google Scholar]
  8. 8. R. V BOOK, Thue Systems as Rewriting Systems, in J. P. JOUANNAUD Ed., Rewriting Techniques and Applications, Lect. Notes in Comput. Sci., Vol. 202, 1985, pp. 63-94. [MR: 826056] [Zbl: 0587.03026] [Google Scholar]
  9. 9. R. V. BOOK, M. JANTZEN and C. WRATHALL, Monadic Thue Systems, Theoret. Comput. Sci., Vol. 19, 1982, pp. 231-251. [MR: 671869] [Zbl: 0488.03020] [Google Scholar]
  10. 10. Y. COCHET, Church-Rosser Congruences on Free Semigroups, Coll. Math. Soc. Janos Bolyai, Algebraic Theory of Semigroups, Vol. 20, 1976, pp. 51-60. [MR: 541109] [Zbl: 0408.20054] [Google Scholar]
  11. 11. Y. COCHET and M. NIVAT, Une generalization des ensembles de Dyck, Israel J. Math., Vol. 9, 1971, pp. 389-395. [MR: 276021] [Zbl: 0215.56005] [Google Scholar]
  12. 12. V. DIEKERT, Some Remarks on Presentations by Finite Church-Rosser Thue Systems, private communication. [Zbl: 0636.20023] [Google Scholar]
  13. 13. R. H. GILMAN, Computations with Rational Subsets of Confluent Groups, Proceedings of EUROSAM 84, Lect. Notes in Comput. Sci., Vol. 174, 1984, pp. 207-212. [MR: 779127] [Zbl: 0549.68025] [Google Scholar]
  14. 14. M. GREENDLINGER, Problem of Conjugacy and Coincidence with the Anticenter in Group Theory, Siberian Math. J., Vol. 7, 1966, pp. 626-640. [MR: 199257] [Google Scholar]
  15. 15. R. H HARING-SMITH, Groups and Simple Languages, Trans. Amer. Math. Soc., Vol. 279, 1983, pp. 337-356. [MR: 704619] [Zbl: 0518.20030] [Google Scholar]
  16. 16. M. JANTZEN, Thue Systems and the Church-Rosser Property, Proceedings of MFCS 84, Lect. Notes Comput. Sci., Vol. 176, 1984, pp. 80-95. [MR: 783439] [Zbl: 0553.03025] [Google Scholar]
  17. 17. M. JANTZEN, Thue Congruences and Complete String-Rewriting Systems, Habilitationsschrift, Univ. Hamburg, 1986. [Zbl: 1022.68565] [Google Scholar]
  18. 18. D. E. MULLER and P. E. SCHUPP, Groups, the Theory of Ends, and Context-Free Languages, J. Comp. System Sci., Vol. 26, 1983, pp. 295-310. [MR: 710250] [Zbl: 0537.20011] [Google Scholar]
  19. 19. P. NARENDRAN and C. O'DUNLAING, Cancellativity in Finitely Presented Semigroups, submitted for publication. [Zbl: 0682.20046] [Google Scholar]
  20. 20. F. OTTO, Conjugacy in Monoids with a Special Church-Rosser Presentation is Decidable, Semigroup Forum, Vol. 29, 1984, pp. 223-240. [EuDML: 134684] [MR: 742135] [Zbl: 0551.20044] [Google Scholar]
  21. 21. F. OTTO, Finite Complete Rewriting Systems for the Jantzen Monoid and the Greendlinger Group, Theoret. Comput. Sci., Vol. 32, 1984, pp. 249-260. [MR: 761345] [Zbl: 0555.20036] [Google Scholar]
  22. 22. F. OTTO, Sorne Undecidability Results for Non-Monadic Church-Rosser Thue Systems, Theoret. Comput. Sci., Vol. 33, 1984, pp. 261-278. [MR: 767394] [Zbl: 0563.03019] [Google Scholar]
  23. 23. F. OTTO, Elements of Finite Order for Finite Monadic Church-Rosser Thue Systems, Trans. Amer. Math. Soc., Vol. 291, 1985, pp. 629-637. [MR: 800255] [Zbl: 0583.20054] [Google Scholar]
  24. 24. F. OTTO, On Deciding Whether a Monoid is a Free Monoid or Is a Group, Acta Inf., Vol. 23, 1986, pp. 99-110. [MR: 845625] [Zbl: 0592.20059] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.