Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 22, Number 1, 1988
Page(s) 57 - 92
DOI https://doi.org/10.1051/ita/1988220100571
Published online 01 February 2017
  1. 1. J. W. DE BAKKER, Recursive Programs as Predicates Transformers, in Formal Descriptions of Programming Concepts, E. J. NEUHOLD éd., North Holland, 1978. [MR: 537905] [Zbl: 0392.68006] [Google Scholar]
  2. 2. J. W. DE BAKKER, Semantics and Termination of Non Deterministic Recursive Programs, in Automata, Languages and Programming, Edimburgh, 1976. [Zbl: 0354.68021] [Google Scholar]
  3. 3. B. S. CHLEBUS, Completness Proofs for Some Logics of Programs, Z. Math Logik und Grundlagen Math., vol. 28, 1982, p. 49-62. [MR: 649907] [Zbl: 0491.03008] [Google Scholar]
  4. 4. G. COUSINEAU, Les arbres à feuilles indicées : un cadre algébrique de définition des structures de contrôle, Thèse d'état, Paris, 1977. [Google Scholar]
  5. 5. G. COUSINEAU, An Algebraic Definition of Control Structures, Theoretical computer science, vol. 12, 1980. [MR: 585111] [Zbl: 0456.68015] [Google Scholar]
  6. 6. G. COUSINEAU, A Programmation en EXEL, Revue technique THOMSON-CSF, vol. 10, n° 2, 1978, et Vol 11, n° 1, 1979. [Google Scholar]
  7. 7. G. COUSINEAU, The Algebraic Structure of Flowcharts, 8th MFCS Symposium 1979, Lecture Notes in Computer Science, n° 74, Springer Verlag. [Google Scholar]
  8. 8. E. ENGELER, Algorithmic Properties of Structures, Math. System Theory, 1, 1967. [MR: 224473] [Zbl: 0202.00802] [Google Scholar]
  9. 9. P. ENJALBERT, Contribution à la logique algorithmique. Systèmes de déduction pour arbres et schémas de programmes, Thèse d'état, Paris, 1981. [Zbl: 0464.68019] [Google Scholar]
  10. 10. P. ENJABERT, Systèmes de déduction pour les arbres et les schémas de programmes, RAIRO Informatique théorique, vol. 14, n° 3 et vol. 14, n° 4, 1980. [EuDML: 92127] [Zbl: 0441.68007] [Google Scholar]
  11. 11. P. ENJALBERT, Preuves de programmes, Revue technique THOMSON-CSF, vol.12, n° 3, 1980. [Google Scholar]
  12. 12. D. HAREL, First Order Dynamic Logic, Lecture Notes in Computer Science, n°68, 1979, Springer Verlag. [MR: 567695] [Zbl: 0403.03024] [Google Scholar]
  13. 13. M. GORDON, R. MILNER et C. WADSWORTH, Edimburgh LCF, Lecture Notes in Computer Science, n° 78, Springer Verlag. [MR: 2049352] [Zbl: 0421.68039] [Google Scholar]
  14. 14. R. MILNER, Logic for Computable Functions Description of a Machine Implementation, Stanford Artificial Intelligence Project, Memo AIM-169, Computer Science Department Report CS 288, mai 1972. [Google Scholar]
  15. 15. R. MILNER, LCF : A Way of Doing Proofs with a Machine. Department of Computer Science, Univ. of Edimburgh. [Zbl: 0423.68049] [Google Scholar]
  16. 16. R. MILNER, A Methodology for Performing Rigorous Proofs About Programs, Proc lst I.B.M. Symposium on Mathematical Foundations of Computer Science, 1976. [Google Scholar]
  17. 17. R. MILNER, A Theory ofType Polymorphism in Programming, Journal of computer and system science, n° 17, 1978. [MR: 516844] [Zbl: 0388.68003] [Google Scholar]
  18. 18. R. MILNER, HOW ML evolved, in Polymorphism, vol. 1, n° 1, janvier 1983, Bell Cabs., L. CARDELLI et D. MCQUEEN éd. [Google Scholar]
  19. 19. G. MIRKOWSKA, Propositionnal Algorithmic Theory of Arithmetic, Communication manuscrite. [Google Scholar]
  20. 20. G. MIRKOWSKA, Propositionnal Algorithmic Logic, Lecture Notes in Computer Science, n° 74, 1979, Springer Verlag. [Google Scholar]
  21. 21. G. MIRKOWSKA, Algorithmic Logic and its Application in the Theory of Programs, Fundamentale Informaticae, vol. I, n° 1 et vol. 1, n° 2, 1977. [MR: 660300] [Zbl: 0358.68036] [Google Scholar]
  22. 22. L. NOLIN et G. RUGGIU, A Formalization of EXEL, Assoc. Comput. Mathematics SIGACT-SIGPLAN, Symposium on the Principles of Programming Languages, Boston, 1973. [Zbl: 0308.68011] [Google Scholar]
  23. 23. H. RASIOWA, Algorithmic Logic, I.C.S. P.A.S. Reports n° 281, Institute of Computer Science, Academic des Sciences, Varsovie, 1977. [Google Scholar]
  24. 24. A. SALWICKI, Formalized Algorithmic Languages, Bull. Acad. Pol. Sci. Ser. Math. Astr. Phys., vol. 18, 1970, p. 227-232. [MR: 270852] [Zbl: 0198.02801] [Google Scholar]
  25. 25. A. SALWICKI, On Algorithmic Theory of Stacks, Fundamentae Informaticae, vol. III, n° 1, 1980. [MR: 596731] [Zbl: 0441.68013] [Google Scholar]
  26. 26. A. SALWICKI, On Algorithmic Logic and its Applications, Internal Report, Pol. Ac. of Sci., 1978. [Zbl: 0387.68027] [Google Scholar]
  27. 27. A. SALWICKI, An Algorithmic Approach to Set Theory, Proc. F.C.T. 1977, Lecture Notes in Computer Science, n° 56, 1977, Springer Verlag. [MR: 483659] [Zbl: 0403.68005] [Google Scholar]
  28. 28. F. GARCIA, Étude et implémentation en ML/LCF d'un système de déduction pour logique algorithmique, Thèse Docteur-Ingénieur, juin 1985, Université Paris-VII. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.