Free Access
Issue
RAIRO. Inform. théor.
Volume 18, Number 1, 1984
Page(s) 23 - 46
DOI https://doi.org/10.1051/ita/1984180100231
Published online 01 February 2017
  1. 1. J. A. BRZOZOWSKI, Hierarchies of Aperiodic Languages, R.A.I.R.O., Informatique Théorique, vol. 10, 1976, p. 33-49. [EuDML: 92031] [MR: 428813]
  2. 2. J. A. BRZOZOWSKI et R. KNAST, The Dot-Depth Hierarchy of Star-Free Languages is Infinite, J. Computer and System Sciences, vol. 16, 1978, p. 37-55. [MR: 471451] [Zbl: 0368.68074]
  3. 3. J. A. BRZOZOWSKI et I. SIMON, Characterizations of Locally Testable Events, Discrete Mathematics, vol. 4, 1973, p. 243-271. [MR: 319404] [Zbl: 0255.94032]
  4. 4. S. EILENBERG, Automata, Languages and Machines, vol. B, Academic Press, New York, 1976. [MR: 530383] [Zbl: 0359.94067]
  5. 5. R. KNAST, Some Theorems on Graph Congruences, R.A.I.R.O., Informatique Théorique, vol. 17, n° 4, 1983, p. 331-342. [EuDML: 92192] [MR: 743893]
  6. 6. R. KNAST, A Semigroup Characterization of Dot-Depth One Languages, R.A.I.R.O., Informatique Théorique, vol. 17, n° 4, 1983, p. 321-330. [EuDML: 92191] [MR: 743892] [Zbl: 0522.68063]
  7. 7. G. LALLEMENT, Semigroups and Combinatorial Applications, Wiley, New York, 1979. [MR: 530552] [Zbl: 0421.20025]
  8. 8. J. E. PIN, Variétés de langages et variétés de semi-groupes, Thèse, Paris, 1981.
  9. 9. J. E. Pin et J. SAKAROVITCH, Une application de la représentation matricielle des transductions (à paraître). [Zbl: 0563.68064]
  10. 10. J. E. PIN et H. STRAUBING, Monoids of Upper-Triangular Matrices (à paraître). [Zbl: 0635.20028]
  11. 11. C. REUTENAUER, Sur les variétés de langages et de monoïdes, Lect. Notes in Computer Science, n° 67, Springer Verlag, Berlin, 1979, p. 260-265. [MR: 568110] [Zbl: 0411.68066]
  12. 12. I. SIMON, Hierarchies of Events with Dop-Depth One, Thèse, Université de Waterloo, 1972.
  13. 13. I. SIMON, Piecewise Testable Events, Lect. Notes in Computer Science, n° 33, Springer Verlag, Berlin, 1975, p. 214-222. [MR: 427498] [Zbl: 0316.68034]
  14. 14. H. STRAUBING, A Generalization of the Schützenberger Product of Finite Monoids, Theor. Comp. Sc., vol. 13, 1981, p. 137-150. [MR: 594057] [Zbl: 0456.20048]
  15. 15. H. STRAUBING, Finite Semigroup Varieties of the Form V * D (à paraître). [Zbl: 0561.20042]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.