Free Access
Issue |
RAIRO. Inform. théor.
Volume 18, Number 1, 1984
|
|
---|---|---|
Page(s) | 23 - 46 | |
DOI | https://doi.org/10.1051/ita/1984180100231 | |
Published online | 01 February 2017 |
- 1. J. A. BRZOZOWSKI, Hierarchies of Aperiodic Languages, R.A.I.R.O., Informatique Théorique, vol. 10, 1976, p. 33-49. [EuDML: 92031] [MR: 428813] [Google Scholar]
- 2. J. A. BRZOZOWSKI et R. KNAST, The Dot-Depth Hierarchy of Star-Free Languages is Infinite, J. Computer and System Sciences, vol. 16, 1978, p. 37-55. [MR: 471451] [Zbl: 0368.68074] [Google Scholar]
- 3. J. A. BRZOZOWSKI et I. SIMON, Characterizations of Locally Testable Events, Discrete Mathematics, vol. 4, 1973, p. 243-271. [MR: 319404] [Zbl: 0255.94032] [Google Scholar]
- 4. S. EILENBERG, Automata, Languages and Machines, vol. B, Academic Press, New York, 1976. [MR: 530383] [Zbl: 0359.94067] [Google Scholar]
- 5. R. KNAST, Some Theorems on Graph Congruences, R.A.I.R.O., Informatique Théorique, vol. 17, n° 4, 1983, p. 331-342. [EuDML: 92192] [MR: 743893] [Google Scholar]
- 6. R. KNAST, A Semigroup Characterization of Dot-Depth One Languages, R.A.I.R.O., Informatique Théorique, vol. 17, n° 4, 1983, p. 321-330. [EuDML: 92191] [MR: 743892] [Zbl: 0522.68063] [Google Scholar]
- 7. G. LALLEMENT, Semigroups and Combinatorial Applications, Wiley, New York, 1979. [MR: 530552] [Zbl: 0421.20025] [Google Scholar]
- 8. J. E. PIN, Variétés de langages et variétés de semi-groupes, Thèse, Paris, 1981. [Google Scholar]
- 9. J. E. Pin et J. SAKAROVITCH, Une application de la représentation matricielle des transductions (à paraître). [Zbl: 0563.68064] [Google Scholar]
- 10. J. E. PIN et H. STRAUBING, Monoids of Upper-Triangular Matrices (à paraître). [Zbl: 0635.20028] [Google Scholar]
- 11. C. REUTENAUER, Sur les variétés de langages et de monoïdes, Lect. Notes in Computer Science, n° 67, Springer Verlag, Berlin, 1979, p. 260-265. [MR: 568110] [Zbl: 0411.68066] [Google Scholar]
- 12. I. SIMON, Hierarchies of Events with Dop-Depth One, Thèse, Université de Waterloo, 1972. [Google Scholar]
- 13. I. SIMON, Piecewise Testable Events, Lect. Notes in Computer Science, n° 33, Springer Verlag, Berlin, 1975, p. 214-222. [MR: 427498] [Zbl: 0316.68034] [Google Scholar]
- 14. H. STRAUBING, A Generalization of the Schützenberger Product of Finite Monoids, Theor. Comp. Sc., vol. 13, 1981, p. 137-150. [MR: 594057] [Zbl: 0456.20048] [Google Scholar]
- 15. H. STRAUBING, Finite Semigroup Varieties of the Form V * D (à paraître). [Zbl: 0561.20042] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.