Free Access
Issue
RAIRO. Inform. théor.
Volume 16, Number 4, 1982
Page(s) 349 - 363
DOI https://doi.org/10.1051/ita/1982160403491
Published online 01 February 2017
  1. [AW1]E. ASHCROFTetW. WADGE, Lucid, a Non Procedural Language with Iteration, Com. A.C.M., vol. 20, n° 7, July 1977, p. 519-526. [Zbl: 0358.68033] [Google Scholar]
  2. [AW2]E. ASHCROFTetW. WADGE, Intermittent Assertion Proofs in Lucid, I.F.I.P. 77, p. 723-726. [MR: 474941] [Zbl: 0363.68021] [Google Scholar]
  3. [B]BURSTALL, Program Proving as Hand Simulation with a Little Induction, I.F.I.P. 74, p. 308-312. [MR: 448980] [Zbl: 0299.68012] [Google Scholar]
  4. [C]R. CARNAP, Modalities and Quantification, J.S.L., vol. 11, n° 2, 1946, p. 33-64. [MR: 19562] [Zbl: 0063.00713] [Google Scholar]
  5. [E]E. ENGELER, Algoritmic Properties of Structures, Math. Sys. The., vol. 1, n° 3, p. 183-185. [Zbl: 0202.00802] [MR: 224473] [Google Scholar]
  6. [EP]P. ENJALBERT, Systèmes de déduction pour les arbres et les schémas de programmes, R.A.I.R.O. Inform. Théor., vol. 14, n° 3, 1980, p. 247-278. [EuDML: 92127] [MR: 593490] [Zbl: 0441.68007] [Google Scholar]
  7. [F]FARIÑAS DEL CERRO, Un principe de résolution en logique modale (à paraître). [Zbl: 0566.03007] [Google Scholar]
  8. [FL]FLOYD, Assigning Meaning to Programs, Proc. Amer. Math. Soc. Symp. in App. Math., vol. 19, 1967, p. 19-31. [MR: 235771] [Zbl: 0189.50204] [Google Scholar]
  9. [H]D. HAREL, First-Order Dynamic Logic, Lectures Notes in Computer Science, Springer Verlag, n° 68. [MR: 567695] [Zbl: 0403.03024] [Google Scholar]
  10. [HKP]HAREL, KOZEN et PARIKH, Process Logic, Expressiveness, Decidebility, Completeness, F.O.C.S. 80, p. 129-142. [MR: 596055] [Google Scholar]
  11. [HO]HOARE, An Axiomatic Basic of Computer Programming, Com. A.C. M., vol.12, n° 10, 1969. [Zbl: 0179.23105] [Google Scholar]
  12. [HC]HUGHES et CRESSWELL, An Introduction to Modal Logic, Mathuem et Co., London, 1978. [Zbl: 0205.00503] [Google Scholar]
  13. [K]KRÖGER, LAR: A Logic for Algohthmic Reasoning, Acta Informatica, 1977, p. 243-266. [Zbl: 0347.68016] [Google Scholar]
  14. [Ml]Z. MANNA, Properties of Programs and First Order Predicate Calculus, J.A.C.M., vol. 16, n° 2, 1969, p. 244-255. [Zbl: 0198.22001] [Google Scholar]
  15. [M2]Z. MANNA, Logics of Programs, Proc, I.F.I.P. 80, North-Holland, p, 41-52. [Google Scholar]
  16. [MP]Z. MANNAetA. PNUELI, The Modal Logic of Programs, Memo AIM-330 Stanford A.I. Laboratory, Sept. 1979. [Google Scholar]
  17. [NW]Z. MANNAetR. WALDINGER, Is "sometime" sometime better than "always"?: Intermittent Assertions in Proving Program Correcteness, Com. A.C.M., vol. 21, n° 2, 1978, p. 159-172. [MR: 483642] [Zbl: 0367.68011] [Google Scholar]
  18. [Mc]MCARTHUR, Tense Logic, Reidel Publ., 1976. [MR: 536334] [Zbl: 0371.02013] [Google Scholar]
  19. [MCT] MCKINSEY, et TARSKI, Some Theorems about the Sentential Calculi of Lewis and Heyting, J.S.L., vol. 13, 1948, p. 1-15. [MR: 24396] [Zbl: 0037.29409] [Google Scholar]
  20. [MI] MINC, Communication personnelle. [Google Scholar]
  21. ORLOWSKA, Resolution Systems and their Applications, I, II Fundamenta Informaticae, p. 235-267, p. 333-362. [MR: 591776] [Zbl: 0472.68052] [Google Scholar]
  22. [P] W. T. PARRY, Modalities in the Survey System of Strict Implication, J.S.L., vol. 4, 1939, p. 131-154. [Zbl: 0023.09902] [JFM: 65.1105.04] [Google Scholar]
  23. [PR] V. R. PRATT, Semantical Considerations on Floyd-Hoare Logic, Proc. 17th Ann. I.E.E.E. Symp. on Foundations of Comp. Sc., 1976, p. 109-121. [MR: 502164] [Google Scholar]
  24. [RS] RASIOWA et SIKORSKI, The Mathematics of Metamathematics, Warszowa, 1963. [Zbl: 0122.24311] [Google Scholar]
  25. [R] ROBINSON, A Machine Oriented Logic Based on the Resolution Principle, J.A.C.M., vol.12, 1965, p. 23-41. [MR: 170494] [Zbl: 0139.12303] [Google Scholar]
  26. [S] SALWICKI, Formatized Algorithme Language, Bull. Ac. Pol. Sc., vol. 18, n° 5, 1970, p. 227-232. [MR: 270852] [Zbl: 0198.02801] [Google Scholar]
  27. [VE] M. VAN EMDEN, Verification Conditions as Programs, Automate Languages and Programming, MICHEALSON and MILNER, éd., Edinburg Univ. Press, 1976, p. 99-119. [Zbl: 0403.68015] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.